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ABSTRACT 

Parkinson’s Disease (PD) is a prevalent progressive neurodegenerative condition affecting millions globally. 

Research has found that individuals with PD have a reduced risk of certain cancers, such as colon, lung, and rectal 

cancers, but an increased risk of brain cancer. Therefore, there is an urgent need for the development of advanced 

PD diagnostic methods and for investigating the relationships between risk factors, such as lifestyle due to 

handedness associated with various types of cancers. Recent ad- vancements in magnetic resonance imaging have 

enhanced PD diagnosis, reducing misdiagnosis and facilitating more accurate disease progression monitoring. 

Nevertheless, challenges exist, particularly in the distinction of PD between left-handed and right-handed patients 

over time. This survey provides an overview of contemporary deep learning-based imaging analysis methodologies, 

encompassing both non-longitudinal and longitudinal contexts. We also explore existing limitations and prospects 

for refinement to gain deeper insights. These insights are poised to inform the development of personalized 

treatment strategies for PD patients while elucidating the current disparities between deep learning models and 

their efficacious implementation in clinical practice. 
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1. Introduction 

Parkinson’s Disease (PD) is a persistent and incapacitating neurodegenerative disease that impacts millions of 

people globally. It ranks as the second most prevalent neurodegenerative disorder, following Alzheimer’s disease 

[1]. It is primarily characterized by the degeneration of striatal dopaminergic neurons in the substantia nigra, 

resulting in motor symptoms such as bradykinesia, tremors, and rigidity [2]. Additionally, non-motor symptoms 

may arise due to the en- gagement of other neurotransmitter systems, contributing to neuronal loss in non-

dopaminergic regions and there can be overlap between motor and non- motor symptoms. This disease exerts a 

substantial clinical impact on patients, particularly in the age group of those over 65, which comprises the largest 

number of PD patients [3]. It profoundly affects patients, their families, and caregivers due to its progressive 

degenerative impact on mobility and muscle control. Furthermore, prior research has established a connection 

between the development of cancer subsequent to a PD diagnosis. Several studies have revealed a positive 

correlation between PD and melanoma and brain cancers, while others have identified a negative association 

between PD and colon, rectal, colorectal, and lung cancers [4]. Therefore, it is imperative to delve deeper into the 

role of certain risk factors, such as lifestyle habits influenced by handedness, genetic variants, gender, etc. in 

influencing the subsequent cancer risk among PD patients [4–10]. 

Neuroimaging plays a major role in supporting the clinical diagnosis of PD by differentiation of PD from other 

diseases or atypical Parkinsonism. Recent advancements in Magnetic Resonance Imaging (MRI) have significantly 

enhanced PD diagnostic accuracy, reduced the incidence of misdiagnosis, streamlined early detection, and hold 

promise for effectively tracking and monitoring disease progression [11, 12]. Many different MRI techniques are 

being employed in PD research and diagnosis including structural MRI, Functional MRI (fMRI), Diffusion Tensor 

Imaging (DTI), Magnetic Resonance Spectroscopy (MRS), and Quantitative Susceptibility Mapping (QSM), etc [13]. 

Indeed, the different MRI techniques offer distinct approaches and advantages when diagnosing and studying 

different brain regions of the nervous system and different types of neurons in PD. The selection of the most suitable 

MRI technique and magnetic field strength frequently hinges on the specific research question and the particular 

region of interest. By amalgamating diverse MRI methodologies, researchers can attain a more all-encompassing 

comprehension of the disease’s underlying mechanisms, encompassing its effects on diverse cerebral regions and 

intricate neural models [14, 15]. 

Nonetheless, various factors have impeded progress in the field of MRI-based PD diagnosis, including relatively 

high cost, while the more significant bottleneck in MRI utilization stems from the shortage of radiology specialists 

capable of interpreting the images and synthesizing the information to establish a diagnosis [15]. Another limitation 

is that, for certain specific research questions, there remains a shortage of comprehensive and efficient approaches 

for diagnosis and imaging analysis. For example, the role of handedness in disease manifestation and progression 

remains a relatively unexplored area. 

Handedness, the preference for using one hand over the other for most activities, is a fundamental aspect of 

human neurobiology. Approximately 90% of the population is right-handed, while the remaining 10% are either 

left-handed or ambidextrous [16]. Studies have shown that there are differences in brain activity loss between 

patients with different dominant hand preferences in PD and found that the genetic variants contribute to 

neurodevelopmental lateralization of brain organization, which in turn influences both the handedness phenotype 

and the predisposition to develop certain neurological and psychiatric diseases based on genotypes and brain image 

scans of about 9,000 participants from more than 400,000 people ages from 40 to 69 selected from the UK Biobank 

[17, 18]. Our previous study also has demonstrated a significant difference in step counts, which serve as an 

important means of quantifying declining ambulatory behavior associated with disease progression, between right-

handed versus left-handled or ambidextrous PD patients [19]. Handedness’s potential influence on PD has only 

recently gained attention and as of the most recent data available, there is limited research and a scarcity of relevant 
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papers on the subject. 

Our review aims to bridge this gap by offering an exploration of current imaging analysis techniques [20–25] 

used in PD research. We specifically emphasize a modeling perspective, encompassing deep learning (DL), one 

subfield of artificial intelligence (AI) techniques, made feasible by the current advancements in computing power 

and more availability of large datasets. Additionally, we emphasize the differentiation between right-handed and 

left-handed patients. By doing so, we hope to uncover valuable insights that can inform personalized treatment 

strategies for PD patients and highlight current gaps between the AI automation models and their effective 

implementation in the final clinical setting. 

2. MRI imaging sequences in PD patients 

A recent study [18] has confirmed that left-handers, who possess a gene associated with improved verbal skills, 

have a lower risk of PD when compared to right-handers. This study revealed an increase in measures of 

spontaneous temporal synchronization (functional connectivity) between left and right language models in left-

handers and the cytoskeletal differences associated with handed- ness are observable in the brain. Verreyt N et al 

[17] wrote a review paper and also concluded the differences in cognitive performance. Left-handed PDs exhibit 

weaker performance in spatial attention, visuospatial orienting, and mental imagery tasks while better in language 

tasks. It’s important to note that PD patients don’t necessarily exhibit a uniform cognitive profile. Instead, symptom 

laterality, or the side of the brain affected, is a crucial factor that must be considered. Inspired by those discoveries, 

we foresee that conducting imaging analyses comparing left-handed and right-handed PD patients could offer a 

promising avenue for a more profound understanding. It also presents a viable path to assist radiologists in 

achieving automated and efficient disease diagnoses by harnessing the capabilities of advanced MRI imaging 

analysis. 

MRI’s non-invasive nature has been a revolutionary tool in neurology, particularly in diagnosing and 

differentiating movement disorders like PD from its mimics [26]. Leveraging its non-invasive nature and high-

resolution capabilities, MRI provides profound insights into the structural and functional aberrations inherent to 

PD. These insights span from elucidating the pathophysiological hallmarks, such as iron accumulation in the 

substantia nigra [27], to mapping intricate neural connectivity patterns disrupted by the disease [28]. Furthermore, 

MRI’s aptitude in differentiating PD from other atypical parkinsonian syndromes bolsters its diagnostic and 

prognostic value, ensuring tailored therapeutic approaches [26]. As research endeavors continue to expand, MRI 

remains at the forefront, offering a panoramic window into the neural underpinnings and disease progression of 

PD, shaping the future trajectory of both clinical practice and scientific exploration [29]. 

Two basic MR images are T1-weighted (T1) and T2-weighted (T2) sequences, which are shown in Figure 1. A 

third commonly used sequence-the Fluid Attenuated Inversion Recovery (FLAIR) has been introduced as a 

complement of, or even a replacement for the T2. The visual assessment of T1 and T2 is normal in patients with 

early PD but provides a main role of detecting or ruling out other underlying pathologies causing PD [30]. 

T1-weighted images play a pivotal role in a range of analyses related to brain atrophy, encompassing 

measurements of diameter, area, and volumes [31]. These analyses are typically integral to automated volume 

assessments, aiding in the quantification of structural changes in the brain over time. Such analyses are fundamental 

for gaining insights into brain health and facilitating the diagnosis of neurological conditions [32]. Atrophy patterns 

are better demonstrated by T1-weighted images, displaying anatomical details and providing an excellent grey and 

white matter contrast. More recently, advanced T1 sequences were developed to improve the detection of nigral 

changes in PD patients. These include a variety of inversion recovery images [33–36] and a recently developed 

neuromelanin-sensitive T1-weighted sequence [37–39]. 

On the other hand, T2 and FLAIR images exhibit heightened sensitivity to alterations in tissue properties and  
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Figure 1. Illustration magnetic resonance imaging. 

Notes: (a) T1-weighted MR images, (b) T2-weighted MR images, (c) FLAIR sequences-based MR im- ages), (d) diffusion tensor 
imaging (DTI), (e) susceptibility-weighted imaging (SWI) and (f) functional MRI (fMRI) characteristics of Parkinson’s disease 
patients. 

are frequently employed to identify abnormalities, pinpoint fluid accumulations, and evaluate soft tissue 

characteristics. An elevated T2-weighted signal in MRI scans typically indicates issues like de- generation, 

demyelination, or gliosis in the white matter regions of the brain. Conversely, a reduced T2-weighted signal is 

usually observed in the subcortical grey matter nuclei, which could suggest the accumulation of paramagnetic sub- 

stances, like iron. To enhance the detection of such iron deposits, techniques like T2-weighted gradient echo or 

susceptibility-weighted imaging sequences can be utilized. These methods are especially sensitive to magnetic 

susceptibility effects caused by iron. Furthermore, higher magnetic field strengths in MRI, such as those found in 

more advanced MRI machines, can provide greater spatial resolution. This increased resolution may lead to a more 

precise measurement of iron accumulation in specific subcortical regions, like the substantia nigra (SN) and 

striatum. This precision is particularly useful in distinguishing different types of neurodegenerative disorders that 

affect movement, such as Parkinson’s. One example of T1 and FLAIR MRI images on right and left-handed Parkinson 

patients is shown in Figure 2. Thanks to the advancements in T1 and T2 weighted MRI brain imaging sequences, AI-

based models for automated imaging diagnosis and segmentation based on those imaging sequences have emerged 

as invaluable tools within the realm of medical imaging. 

The evolution of MRI modalities has engendered a paradigm shift in the diagnostic landscape of PD. Chief 

among these innovations are Diffusion-Weighted Imaging (DWI), Diffusion Tensor Imaging (DTI), and the 

increasingly recognized Susceptibility Weighted Imaging (SWI). According to [40], DWI and DTI, by delineating the 

microscopic motion of water molecules, offer unparalleled in- sights into the integrity of white matter. Crucially, 

these techniques have been instrumental in identifying micro-structural deviations within the substantia ni-gra, a 

region unequivocally implicated in PD’s pathophysiology [41]. SWI, on the other hand, is noted for its acute  
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Figure 2. Illustration magnetic resonance imaging (include T1 and FLAIR weights) on left and right-handed 

Parkinson’s patients.  

Notes:(a) presents the images from right-handed Parkinson’s patients; (b) presents the images from left- handed Parkinson’s 
patients. 

sensitivity to magnetic susceptibilities, notably iron. [42] highlight that the discernable iron accumulation, 

particularly in the substantia nigra, is emblematic of PD. Furthermore, this iron buildup has potential implications 

for PD severity, with emerging evidence suggesting a correlation between heightened iron levels and more advanced 

disease stages. Parallelly, Functional MRI (fMRI) has solidified its status as an indispensable investigative tool. [43] 

emphasized that fMRI’s capability to monitor cerebral hemodynamics allows for a granular examination of neural 

models and connectivity patterns-key players in PD’s neurobiological narrative. Collectively, these advancements 

not only augment our understanding of PD but also herald a new epoch of precise diagnostic and therapeutic 

stratagems. 

MRI techniques have gained an esteemed position in the landscape of PD research and clinical applications. A 

salient feature of MRI’s utility in PD management lies in its unparalleled diagnostic prowess. According to a seminal 

study by [44], MRI can meticulously discern between idiopathic PD and Atypical Parkinsonian Syndromes. This 

diagnostic differentiation, facilitated by MRI’s ability to identify distinct neuroanatomical markers, is instrumental 

in tailoring patient-centric therapeutic regimens, thereby enhancing the precision of medical interventions. 

Moreover, as underscored by [29], MRI’s longitudinal application serves as a conduit to trace the temporal trajectory 

of PD. By obtaining sequential MRI scans, clinicians are afforded a comprehensive vista into the evolving 

neurotopography of PD, enabling them to capture a spectrum of both structural and functional cerebral 

modifications attributable to the disorder’s progression. Venturing into the therapeutic domain, MRI has emerged 

as an irreplaceable guide for surgical endeavors, specifically Deep Brain Stimulation (DBS). As elucidated by [45], 

the preoperative planning facilitated by MRI ensures exacting electrode placement during DBS procedures. This 

precision, in turn, not only optimizes therapeutic dividends but also significantly mitigates the risk of potential 

intraoperative complications. 

3. Deep Learning-based MRI imaging analysis 

The goal of DL-based imaging processing technology is to enhance clinical diagnosis by minimizing diagnostic 

complexity and errors, providing transparent information, and offering clear explanations to support medical 

professionals in their assessments. There are two primary applications in brain soft tissue imaging: soft tissue 

segmentation and diagnostic classification for distinguish- ing between right-handed and left-handed patients in 

PD diagnosis. Example studies with the contribution are summarized in Table 1. 

DL constitutes a specialized domain within the broader field of AI and sets itself apart from traditional machine 

learning models. Convolutional neural networks (CNN) are frequently employed for classification tasks in image 

classification and segmentation challenges in computer vision [52–61]. CNNs demonstrate exceptional efficiency  
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Table 1. Summary of Contributions of Deep Learning in MRI Image Analysis. 

Ref Contribution Results 

[46] 
Multi-atlas segmentation with motivation and strategies 
for atlas selection. 

Assessed accuracy against fusion of random 
atlas sets. 

[47] 
Nonlocal patch-based segmentation for anatomical brain 
structures like the hippocampus and lateral ventricles. 

Outperformed both appearance-based and 
template-based methods. 

[48] 
Multicontrast, multiecho MRI method for delineating the 
STN and other basal ganglia structures. 

Enhanced STN delineation; provides valuable 
images for DBS planning and implantation. 

[49] 
Dual-contrast patch-based label fusion method for ROI 
segmentation using multivariate cross-correlation. 

State-of-the-art performance in segmenting 
subthalamic nucleus, substantia nigra (SN), 
and red nucleus via MRI. 

[50] 
Studied contrast behavior of SN in magnetization 
transfer and susceptibility weighted imaging. 

Elucidated SN volumes to aid in early-stage 
PD biomarker development. 

[51] 
UNet application for SN segmentation by linking 
anatomical and signal intensity information. 

Validated via t-test distinguishes between 
healthy control and RBD patient groups. 

 

when confronted with intricate patterns in image data, effectively handling nonlinear relationships, and are widely 

used in medical imaging diagnostics, such as for the classification of PD and healthy control. Their remarkable 

performance in medical imaging, coupled with the capability for parallelization using GPUs [62], has established 

CNNs as a cornerstone in the repertoire of tools utilized by the medical imaging research community. UNet is 

successfully implemented in medical image analysis, which was originally proposed for medical imaging 

segmentation to process the partition of an image into different regions. In contrast to the classical autoencoder 

architecture, which may encounter a bottleneck when utilizing encoder and decoder structures, UNet employs 

deconvolution on the decoder side to overcome this issue. This approach prevents the loss of features through 

connections from the encoder side. Various advanced network blocks with deep learning backbone models have 

been widely explored resulting in many promising approaches in medical imaging tasks [63–68]. It’s worth noting 

that for 3D images, researchers have turned to utilizing 3D convolutions for conventional UNet known as 3D- UNet, 

as demonstrated in [69]. Another variation involves incorporating an attention module either before the encoder 

and decoder components or at the bottleneck of the UNet architecture, introduced by Attention UNet [70]. This 

addition is based on the concept that attention can be viewed as a technique for intelligently organizing 

computational resources to interpret the signal in an informative manner [71]. Similarly, PSPNet aims to improve 

image segmentation by addressing challenges like handling multi-scale information and context understanding [55]. 

It introduces a pyramid pooling module to capture information at various scales, enhancing segmentation 

performance. Its versatility and strong performance on benchmark datasets make it a valuable contribution to 

image semantic segmentation. However, it comes with limitations like computational complexity and data 

requirements. To further improve feature extraction on multi-scale levels, UNet++ builds upon the UNet 

architecture by enhancing feature extraction and context understanding through nested skip connections, which 

allow for better feature extraction at multiple scales [63]. This results in more accurate and fine-grained 

segmentation. To fully explore the sufficient information from full scales, UNet 3+ had been proposed by [72, 73] 

and this new approach uses full-scale skip connections and deep supervision to effectively handle organs of varying 

scales by combining low-level details and high-level semantics from different-scale feature maps. MultiResUNet is 

another extension of the UNet architecture that incorporates residual learning [74]. It processes information at 

multiple resolutions which allows to capture of fine details while maintaining global context, making it particularly 

effective for tasks that require precise segmentation and context understanding with residual learning [75]. 

Different from conventional UNet which is purely based on convolutional operations, transformers, a new 

model architecture named self-attention, has also been explored in image processing because of their success in 

natural language processing [76]. Researchers recognized that Transformers’ self-attention with global context 
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capabilities could benefit computer vision tasks like object detection, image segmentation, and classification [76–

79]. Additionally, the desire for a unified architecture capable of handling both text and images has driven the 

exploration of Transformers in vision tasks. Such as Vision Transformer (ViT) [77] has shown promise and has been 

adapted for medical imaging tasks. Different from ViT, Swin Transformer [79] uses a hierarchical processing strat- 

egy and employs linear self-attention which excels at multi-scale analysis and is more efficient. TransUNet has been 

proposed by [65], it offers advantages such as improved accuracy, reduced annotator dependence, versatility across 

medical imaging modalities, adaptability, and integration into clinical workflows. These benefits make it a promising 

tool for enhancing medical image segmentation and contributing to more accurate and efficient healthcare practices. 

Besides various different architecture of UNet with ViT-based layer, the promising performance, however, typically 

outperforms CNNs with a substantial amount of labeled data. It processes the images in a sequential manner, which 

may not be the most efficient way to capture spatial information. Various advanced DL training approaches hereby 

have been explored such as unsupervised domain adaptation, semi-supervised learning, and weakly-supervised 

learning [80–87]. 

Federated learning, aimed at enabling efficient, decentralized model train- ing, is a key study topic in MRI brain 

image analysis. This approach addresses data distribution imbalances and data privacy issues effectively. [88] 

highlights its relevance in smart healthcare, particularly in scenarios where large, diverse datasets are scarce. 

Federated learning (FL) facilitates collaborative ML model training without sharing sensitive patient data, a crucial 

advancement in scientific collaboration across medical research centers. [89, 90] further emphasize the advantages 

of FL in handling private medical image data, like 3D brain MRI scans, without breaching confidentiality. Their work 

introduces novel FL frameworks that address cross-site data heterogeneity, demonstrating improved accuracy in 

diagnostic tasks. [91] showcase FL’s ability to maintain data privacy in brain tumor identification from MRI images 

with minimal performance com- promise [92] provide a comprehensive overview of FL’s role in early brain tumor 

diagnosis, underscoring its accuracy and potential in AI-assisted diagnosis. [93] identify FL as a solution to the 

challenges of building robust AI models with 

small, unlabeled datasets in medical imaging, enhancing global model performance while preserving patient 

privacy. These studies collectively affirm the significant role of federated learning in advancing MRI brain image 

analysis while safeguarding data privacy. 

Domain adaptation is a training strategy that allow model transfer knowledge to tackle with other medical 

imaging tasks. Kermany DS et al. used an Inception V3 architecture pre-trained on the ImageNet dataset [85] which 

contains 108312 optical coherence tomography (OCT) images and they got an accuracy of 96.6%, with a sensitivity 

of 97.8%, a specificity of 97.4%, and a weighted error of 6.6%. Besides that, the Area Under Curve (AUC) of the Re- 

ceiver operating characteristic (ROC) value is 99.9%, demonstrating the model’s extraordinary ability to 

differentiate between various disease categories. Magesh PR, Myloth RD, and Tom RJ [86] have applied transfer 

learning to train the VGG16 CNNs on DaTscans from the Parkinson’s Progression Markers Initiative (PPMI) database 

to classify PD and healthy control. Impressively, the model achieved outstanding performance: 95.2% accuracy, 97.5% 

sensitivity, and 90.9% specificity. To enhance interpretability, they used the Local Interpretable Model-Agnostic 

Explanations (LIME) explainer, which involved visual superpixels for deeper insights into the model’s classifications. 

Model training with limited annotations such as semi- and weakly-supervised learning is also an essential area. 

Consistency regularization, also known as consistency-aware training, is a key concept and it aims to ensure the 

model maintains similar predictions under various data and model perturbations [94]. The data that is not 

annotated can be potentially extended with a pseudo label according to the prior knowledge [25, 95]. Another 

common strategy of training with limited data is adversarial training [96]. An additional model is developed to 

classify the quality of pseudo label in an iterative manner against the model while training [97, 98]. 
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4. Deep Learning-based MRI imaging analysis in longitudinal settings 

The above model architectures have consistently demonstrated their ability to enhance model performance 

across various adaptations. Nevertheless, it’s important to note that there have been relatively few studies 

conducted in a longitudinal setting for PD disease. Siamese architecture is a type of neural model design that uses 

twin subnetworks with shared weights [99]. It is primarily used for similarity or dissimilarity learning tasks, such 

as face recognition or signature verification. Siamese models take two input samples and process them through 

identical subnetworks to measure the similarity or dissimilarity between them, it can better reduce the distance of 

sample values between unchanged regions and increase the distance of samples in changed regions. This 

architecture is particularly effective at learning how to differentiate between pairs of data points and is commonly 

employed in tasks that involve comparing and classifying objects or patterns. 

Based on that, in 2018, Bhagwat N et al. [100] employed a Longitudinal Siamese Network (LSN) to predict the 

onset of Alzheimer’s disease. They utilized MRI data of the same individuals from the Alzheimer’s Disease 

Neuroimaging Initiative (ADNI) and the Australian Imaging, Biomarker and Lifestyle Flag- ship Study of Ageing 

(AIBL), comparing two early time points to the baseline scan. Their model exhibited remarkable accuracy, achieving 

high accuracy and an impressive AUC for binary tasks. In 2022, Tao Chen et al. [101] also proposed a new Siamese 

neural model based on UNet (Siamese_UNet) with two parts for change detection in high-resolution remote sensing 

images. The Siamese_UNet comprises two main parts: a feature extraction Siamese model and a decoding section 

used to analyze feature differences between baseline and follow-up images of the same individuals. Their model 

achieved the highest F1 and Dice metrics while maintaining similar levels of precision and recall accuracy com- 

pared to other models, including DASNet, UNet, AUNet, and Siamese Net. Another approach, as demonstrated by Xu 

F et al. [102], involves the use of LSTM-UNet. In their model, they combined a multi-modal UNet with convolutional 

Long Short-Term Memory (LSTM). The UNet component incorporates a hyper-dense encoder and decoder to 

effectively harness multi-modal data and the convolutional LSTM leverages sequential information between 

consecutive brain segmentations. Their model boosted the model performance compared to the standard UNet with 

fewer model parameters. 

Other model structures have also been proposed, [103] proposed a feature encoding algorithm based on a 

stacked sparse auto-encoder (SSAE) for training on longitudinal multi-modal PD data from the Parkinson’s 

Progression Markers Initiative (PPMI) study, even when dealing with a small sample size. Their model exhibited 

superior performance compared to other structures, such as stacked auto-encoders (SAE), deep belief networks 

(DBN), and CNN, demonstrating its efficient handling of small datasets without overfitting. Notably, the 

regularization term and sparse constraints integrated into SSAE enable it to capture complementary features from 

different modalities effectively and amplify temporal differences in longitudinal data. [104] introduced a 

sophisticated three-stage deep learning ensemble approach. In the initial stage, they employed three distinct 

methods to extract spatiotemporal features from baseline DaTscan images. These methods included convolutional 

LSTM, CNN models such as VGG16 [105], ResNet50 [75], DenseNet121 [106], and InceptionV3 [107], and finally, an 

LSTM network for extracting features from maximum intensity projections (MIPs) of DaTscan transaxial image 

slices. Moving to the second stage, they utilized LSTM to extract temporal features from the baseline MDSUPDRS-III 

time sequences. In the ultimate stage, they amalgamated the features extracted from Stages 1 and 2 with other non-

imaging clinical measures, such as age, gender, and duration of illness. These features were then fed into a fully 

connected layer to produce predictive outcomes. 

However, the longitudinal PD imaging data currently available in research studies typically consist of only a 

few repeated measurements. This limited data may not effectively capture the disease progression trends and 

individual variabilities, especially considering that PD is a chronic neurodegenerative disease that often spans many 

years. Therefore, it is advisable to consider supplementing the dataset with additional data collected from a clinical 
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perspective. Another note is that this will require significantly greater computational power as the number of 

measurements increases. 

5. Discussion 

In this short survey, we have explored the latest advancements in state-of-the- art deep learning techniques 

proposed for PD diagnosis. However, it is noteworthy that there is a significant gap in available PD diagnostic 

approaches that specifically consider handedness within the framework of deep learning models. The 

aforementioned deep learning model have the potential to be effectively employed in the investigation of 

discrepancies between neuroimaging data from left-handed and right-handed PD patients, particularly in a 

longitudinal context. Longitudinal analysis is crucial because it allows researchers to capture the dynamical 

progression or changes in disease characteristics over time, and discover time-varying biomarkers used for early 

diagnosis or monitoring, as well as the time-varying features extracted from brain imaging. It facilitates the 

monitoring of disease evolution within individuals or populations, aiding the customization of personalized 

treatment strategies and interventions while providing insights into the disease’s natural history and its various 

stages. Moreover, it continuously evaluates the effectiveness of treatments or interventions, drawing from changes 

in disease symptoms observed in imaging data. Furthermore, longitudinal analysis extends the capabilities of CNN 

models, which often focus solely on imaging segmentation or disease classification, by harnessing CNN’s predictive 

power and feature extraction alongside clinical risk factors. This approach enables the identification of risk factors, 

predictive markers, and the revelation of cyclic or episodic patterns contributing to disease development or 

progression. While the rapid advancements in deep learning for PD diagnosis hold great promise, it’s essential to 

recognize that disease heterogeneity, data quality, and labeling accuracy are critical factors influencing model 

performance. For in- stance, the diversity in imaging modalities, limited sample sizes, variations in imaging quality, 

and the presence of noisy labels can introduce prediction biases. Additionally, it’s worth noting that large deep 

learning models can easily overfit the training dataset, leading to generalization issues. Another potential concern 

to be addressed is the presence of spurious correlations. In addition to the limitations mentioned earlier, the 

interpretability of the model also hinders its acceptance in clinical diagnosis. The process by which the model 

acquires the ability to identify relevant features and their connections does not mimic the learning process of 

radiologists in pathology diagnosis. The AI’s primary goal is to uncover intricate features and interactions that might 

have initially evaded human observation. Nonetheless, it remains crucial that the newly unearthed insights are 

validated and confirmed by radiologists. In clinical diagnosis, the newly discovered knowledge must be verifiable 

by the radiologist [15]. 

6. Conclusion 

In summary, our study underscores the prevailing trends in deep learning methods utilized for PD diagnosis. 

We emphasize the critical clinical need to advance the modeling paradigm within a longitudinal context. Typically, 

PD diagnostic imaging is gathered from patients who have already received confirmed diagnoses, often at an 

advanced stage with noticeable motor symptoms [108]. Consequently, there is an urgent demand for the 

development of disease progression models to aid in the early identification of biomarkers. Furthermore, it is 

essential to integrate the expertise of radiologists into the imaging processing workflow. This integration offers a 

"supervised" manner and facilitates transparent knowledge sharing between clinical professionals and model 

engineers. This collaborative effort will not only enhance the predictive capabilities of the final model but also 

establish an interactive framework that supports informed decision-making both forward and backward in the 

diagnostic process. 
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Decentralized federated learning, another key area for future development, provides a practical solution to 

address data distribution imbalances, data privacy issues, and resource limitations in scenarios with unevenly 

distributed and smaller sites in the medical imaging field. It will enable efficient model training while safeguarding 

data security and communication efficiency, emphasizing the significance of collaborative community efforts in its 

advancement and adoption. Despite the current challenges, we envision promising opportunities in the future. With 

the increasing availability of data and enhanced imaging processing capabilities, deep learning will empower 

clinical professionals to conduct more profound explorations into disease diagnosis and progression. This, in turn, 

holds the potential for discoveries in drug development and treatment options. 
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