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ABSTRACT 

This paper describes two novel approaches to cost estimation of manufactured products where a data set of similar 

products have known manufactured costs. The methods use the notion of piecewise functions and are (1) clustering 

and (2) splines. Cost drivers are typically a mixture of categorical and numeric data which complicates cost 

estimation. Both clustering and splines approaches can accommodate this. Through four case studies, we compare 

our approaches with the often-used regression models. Our results show that clustering especially offers promise 

in improving the accuracy of cost estimation. While clustering and splines are slightly more complex to develop 

from both a user and a computational perspective, our approaches are packaged in an open-source software. This 

paper is the first known to adapt and apply these two well-known mathematical approaches to manufacturing cost 

estimation. 
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1. Background 

Poorly established product prices may cause two unfavorable consequences: (1) A potential loss of profit due 

to the gap between the expected cost and the actual cost, and (2) A loss of customers and goodwill due to higher 

prices than competitors in the market. Statistical tools have always been popular among executive planners when 

cost estimation effort takes place. Before proceeding forward into statistics, we need to know the cost structure of 

a product which consists of a collection of cost drivers. A cost driver is defined as any factor which changes the cost 

of an activity1. From a statistical perspective, cost drivers are explanatory variables that have a contribution to the 

manufacturing cost of products. Through this paper, synonyms for cost drivers are cost variables, design variables, 

design attributes or, simply, variables and attributes.  

The main concern of our research is to predict the manufacturing cost of a product without dealing with 

probability density or mass function assignments or making strong assumptions concerning parameters. We will 

convert physical similarities of products into meaningful mathematical similarities and make product-by-product 

comparisons. When making product-by-product comparisons, the number of analogies is likely to grow as the 

number of products grows. Therefore, over a diverse product family, establishing only a single accurate estimation 

model is challenging and doubtful. This motivates us to make comparisons by dividing the database of products into 

neighborhoods until these neighborhoods become sufficiently homogenous and using piecewise functions. Using 

statistical terminology, we can call these neighborhoods, groups or clusters. We then develop cost estimation 

models for each cluster. There are many clustering techniques as we explain later but few applicable to the general 

task of cost estimation in manufacturing. 

When cluster specific models are considered within their defined ranges, at the boundaries they are non-

continuous but can form piecewise functions. Since the main concern of this research is to predict the 

manufacturing cost of a product with non-parametric methods, an alternative to clustering is to use splines. We can 

define a spline as a function that is constructed by piecewise polynomial functions where these polynomial 

segments connect. Our research also seeks the possibility of building spline models to accommodate cost estimation 

process with improved accuracy.  

There are two issues rendering this cost estimation problem quite complicated: (1) incorporating qualitative 

and quantitative variables in a dataset simultaneously, (2) the number of variables in a dataset may be less than the 

number of products but still large relative to the number of products. We address the first issue by using applicable 

clustering and spline techniques and the second issue by removing irrelevant variables and leveraging the data set.  

In this paper, we have collected four datasets from three manufacturing industries. The representative features 

have been selected according to the cost drivers for these specific manufacturing processes. The diversity of the 

manufacturer datasets shows that this study can be extended over different industries by including industry specific 

design variables. 

This paper is the first known application of clustering and of splines to cost estimation in manufactured 

products. We show that these approaches can be relatively straightforward and can offer advantages over the often-

used multiple regression models. Section 2 gives the relevant literature while section 3 details the clustering 

approach. Section 4 details the spline approach and Section 5 gives results and discussion. Section 6 describes our 

software system which is in the public domain. Section 7 wraps up with concluding remarks and future research.  

2. The relevant literature 

2.1. Manufacturing cost estimation 

 
1 According to Chartered Institute of Management Accountants (CIMA). 
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Layer et al. (2002) point out that manufacturing cost calculations are classified based on the timing of 

calculations: (1) Pre-calculation, (2) Intermediate calculation, and (3) Post-calculation. Pre-calculation estimates 

the potential costs before actually manufacturing the item. The price of a product is usually declared based on the 

pre-calculation values when a new unique design has been requested by a customer for a future manufacturing 

agreement. As a result, higher accuracy in the pre-calculation step is crucial to generate designs where low-cost and 

high-quality are maintained. On the other hand, the actual cost is the interest of the post-calculation phase. Instead 

of estimated cost drivers, incurred costs are included in the post evaluation step. Our research interest is the pre-

calculation phase where we seek establishing the cost of a product accurately before actual production takes place. 

However, we need historical data of product costs previously recorded based upon the post-calculation for our 

methods.  

Manufacturing cost estimation techniques are classified into two main categories consistently by authorities. 

Layer et al. (2002) and Dai et al. (2006) termed these two main categories qualitative and quantitative techniques. 

However, second-level classifications vary according to subjective opinions. Figure 1 has been regenerated from a 

literature survey of product cost estimation and gives an overview of the key advantages and limitations of the 

underlying product cost estimation techniques (Dai et al., 2006).  

Our clustering-based cost estimation approach fits none of these classifications strictly but can be considered 

as a combination of several approaches, namely case-based systems, analogical parametric cost estimation 

techniques, operation-based, and feature-based models. In our study, manufacturing cost estimation uses historical 

data of similarities among previously manufactured products.  

On the other side, spline functions have never been used as a manufacturing cost estimation tool in the literature. 

Our curiosity in using such a model motivated us to develop spline cost estimation models that can accommodate 

mixed categorical and numeric design attributes. Our spline-based cost estimation approach can also be considered 

a combination of several approaches, namely analogical non-parametric regression analysis along with operation-

based and feature-based models.  

2.2. Clustering approaches 

Figure 2 shows the main approaches in clustering while Table 1 assesses the clustering methods according to 

their suitability for manufacturing cost estimation. A leading algorithm is the 𝑘-means (or 𝑐-means) clustering 

method. It was first introduced by MacQueen (1967) to allocate observations in a dataset into a pre-determined 

number of clusters – 𝑘. The logic behind the 𝑘-means algorithm is to find the content of 𝑘 partitions by minimizing 

within cluster variances.  

Two decades after the introduction of the k-means algorithm, the partitioning around medoids (PAM) paradigm 

was developed by Kaufman and Rousseeuw (1987). They called this method, the 𝑘 -medoids algorithm. The 

objective of the method is not to minimize within cluster variability as in k-means. Unlike 𝑘-means approach, the 

method uses real observations as cluster centers and partitions the whole data around these cluster medoids. In 

other words, instead of devising the error sum of squares approach, the algorithm seeks cluster contents around 

representative objects based upon minimization of total dissimilarity. Allocating the observation points to the 

nearest medoid is advantageous in many aspects. Since the cluster centers are picked from appropriate elements in 

the actual dataset, the variables in that dataset do not solely need to be on an interval scale. Kaufman and Rousseeuw 

(1987) also proved that the 𝑘 -medoids approach gives more robust results than methods based on variance 

minimization, as with 𝑘-means. Additionally, the existence of outliers does not perturb the 𝑘-medoids clustering 

progress.  
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Figure 1. Overview of product cost estimation techniques with advantages and limitations. Adapted from Dai et al. 

(2006). 

2.3. Clustering similarity measures 

Most clustering techniques require an assignment of a similarity (or dissimilarity) measure in the very initial 

step. Table 2 gives a comprehensive summary of ten similarity measures. The attributes included in the table are 

specifically chosen considering the scope of our application problems. These are the aspects of correlation 

consideration, handling only numeric data, handling only categorical data, handling mixed numeric and categorical 

data, non-negativity requirement, scaling for ranges of variable and elliptical shaped data, modifiable weights, 

sensitivity to outliers, unitless measure and metric properties, and, lastly, but most importantly, compatibility of 

these measures with typical manufacturing cost estimation. As you can see from this table, none of the existing 

similarity measures are completely compatible with our requirements in their original forms. Notice that, a plus 

sign (+) points out the presence of the feature for a similarity measure.  

Unfortunately, existing similarity measures cannot handle mixed numeric and categorical variables. Using 

Gower’s index to construct a proximity matrix is a good alternative for the clustering analysis because it enables us 

to transform outcomes of different types of variables into a single mathematical value including categorical and 

numeric variables (Kaufmann and Rousseeuw, 1990). The original form of Gower’s index handles interval, nominal,  
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Figure 2. Extended classification of clustering methods. 

and binary data as a similarity coefficient between 0 and 1. Kaufmann and Rousseeuw (1990) described a slight 

generalization of this coefficient which covers ordinal and ratio variables in addition to the ones mentioned for the 

original index. With a simple transformation, Gower’s original similarity coefficient (Gower, 1971) can be converted 

into a dissimilarity value between 0 and 1. Kaufmann and Rousseeuw (1990) also transformed the similarity 

coefficients into dissimilarities. The only downside for Gower’s index is that the index is linear. The discrimination 

capacity of the index might not be as powerful as a quadratic or a higher degree polynomial expression.  

2.4. Splines 

Splines constitute a reasonable approach for nonparametric estimation of manufacturing cost functions. A 

spline is a piecewise polynomial (or other functional form) with different polynomials located between “knots” in 

the cost driver hyperspace. Unfortunately, commonly known splines are restricted to continuous predictors 

(attributes). This is a disadvantage when it comes to the generalization of using splines for manufacturing cost 

estimation problems since we may encounter mixed categorical and numeric predictors.  

A numerically stable representation of splines can be written as linear combinations of a set of basis functions 

called B-splines. B-splines was a major development in spline theory and is now the most used in spline applications 

and software. The term “B-spline” was introduced by Curry and Schoenberg (1947). B-spline is a generalization of  
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Table 1. Overview of the most common clustering methods. 

Clustering 
Technique 

Computational Complexity2 Type of Data3 Sensitivity  
to Outliers 

Best Data  
Set Size4 

Initial Seed 
Dependence 

Comments  
Time  Space C N M 

Enumeration5  𝐶(𝑁, 𝐾) + + + No S No Impractical / prohibitive  
Enumeration6  𝐾𝑁/𝐾! - + - No S No Impractical / prohibitive  

Single Linkage 𝑂(𝑁2 ) 𝑂(𝑁2) + + - Yes S No Good for taxonomy  
Complete Linkage 𝑂(𝑁2 ) 𝑂(𝑁2) + + - No S No Not sensitive to outliers 
Average Linkage 𝑂(𝑁2 ) 𝑂(𝑁2) + + - No S No Good for taxonomy  
Ward’s Method 𝑂(𝑁2 ) 𝑂(𝑁2) - + - Yes S No Sensitive to normality  
𝑘-means 𝑂(𝑁𝐾𝑑) 𝑂(𝑁 + 𝐾) - + - Yes L Yes Easy to implement 
𝑘-medoids  𝑂(𝐾𝑑(𝑁 − 𝐾)2) 𝑂(𝑁 + 𝐾) + + + No S No Relatively complex 
𝑘-modes  𝑂(𝑁𝐾𝑑) 𝑂(𝑁 + 𝐾) + - - No S – L Yes Best for binary data 
𝑘-prototypes  𝑂(𝑁𝐾𝑑) 𝑂(𝑁 + 𝐾) + + + Yes S – L Yes Efficient as k-means 
Branch & Bound N/A Varies - + - No S No Gives exact solution  
Model Based 𝑂(𝑁 log 𝑁) N/A + + + No S – L No Non-arbitrary similarity  
Graph Theoretic  𝑂(𝑁2 ) 𝑂(𝑁2) - + - No S No For irregularly shaped clusters 
Meta-Heuristics  Varies Varies + + + No L Possibly Gives solutions fast 
Cluster Ensemble Varies Varies + + + No S Varies Consolidation issues 

Table 2. Summary of the most common similarity measures. 
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Euclidean Distance  +       +  +  

Scaled Euclidean Distance  +    +   + + +  

Minkowski Metric   +      + +  +  

Mahalanobis Distance + +    +    + +  

Canberra Metric  +   +  +   +   

Czekanowski Coefficient  +   +  +   +   

Chebychev Distance  +         +  

Pearson Correlation  + +    +    +   

Cosine Similarity   +    + +      

Similarity Coefficients    +    +   +   

 

Be zier curves using the de Boor recursion formula (Boor, 1976). B-splines are attractive for non-parametric 

modeling but choosing the appropriate number of knots with their locations is a significant issue. Eilers and Marx 

(1996) proposed a roughness penalization procedure by starting with a relatively large number of knots, but still 

less than one per observation. This method combines the reduced knots of regression splines with the roughness 

penalty of smoothing splines where the coefficients are determined partly by the data to be fitted and partly by an 

additional penalty function that aims to avoid over-fitting. 

The method of tensor product splines is an extension to the one-dimensional spaces of polynomial splines over 

a space of multi-dimensional splines by taking tensor products. Because of the outer product nature of the multi-

dimensional space, many properties of polynomial splines in one dimension are retained, such as working with 

single dimension B-spline functions (Schumaker, 2007). Tensor product models consider interaction terms between 

univariate spline functions. We will use an approach which takes the tensor products of spline functions into 

account to handle multiple predictors.  

 
2 N: Number of objects, K: Number of clusters, d: Number of variables (dimension) 
3 C: Categorical, N: Numerical, M: Mixed Categorical and Numerical 
4 S: Small, L: Large  
5 Enumeration expression is written for combinatorial problems where K objects are chosen out of N observations as 
cluster centers 
6 Enumeration expression is written for combinatorial problems where N observations are allocated into K clusters 
with the nearest mean 
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2.5. Cost estimation approaches using clustering and splines 

One of the most relevant studies that have been conducted so far is the work of Angelis and Stamelos (2000) 

concerning software cost estimation. Angelis and Stamelos developed a non-parametric bootstrap simulation tool 

to investigate the accuracy of the underlying estimation methodology which is constructed on Euclidean, Manhattan, 

and Chebyshev distances between an active project and historical projects. Although this work specifically uses 

similarities between historical projects and an active project in the development phase with an emphasis on 

Gower’s index, it does not employ any clustering technique nor an estimation model such as regression models or 

neural networks.  

Lee et al. (1998) proposed a two-phase software cost estimation method which is based on clustering analysis 

and neural networks for mixed numerical and categorical data. For quantitative attributes, they used average 

Euclidean distance. On the other hand, for nominal attributes, the Jaccard coefficient is calculated. A neural network 

which is trained using the output of clustering analysis promises higher accuracy than a non-cluster-integrated 

neural network. As a downside, their work was limited to single linkage hierarchical clustering without the 

existence of ordinal and binary variables. Van Hai et al. (2022) considered several alternative clustering methods to 

estimate effort (not cost) of software projects. They used five categorical variables and clustered using k-means, 

both for the variables collectively and separately to compare those approaches with not clustering the data. 

Xu and Khoshgoftaar (2004) extended software cost estimation efforts with a fuzzy c-means (𝑘 -means) 

clustering approach. Because software experts define the level of complexity according to their subjective opinions, 

using cost associated variables which take certain numerical values does not reflect the true nature of software cost 

estimation efforts. Hence, this research accounts for the imprecision and vagueness of expert knowledge with 

linguistic variables and fuzzy rules. Although the whole method appears to handle mixed numerical and categorical 

variables, in fact, the clustering module itself is only limited to numerical data.  

The performance of multivariate adaptive regression splines (MARS) for software cost estimation efforts was 

investigated by Pahariya et al. (2009). The real challenge in our methodology is dealing with mixed numeric and 

categorical variables, and Pahariya et al.’s work is not very helpful as it mandates unreasonable simplifications in 

the data preparation phase such as discretization of numerical data into ordinal variables.  

Michaud et al. (2003) conducted research on estimating total direct medical costs of people with rheumatoid 

arthritis. These medical costs include physician and healthcare worker visits, medications, diagnostic tests and 

procedures, and hospitalization where the effect of age on the total cost indicated a V-shaped scatter. To model this 

relatively complex age vs. cost relationship, they used linear splines with a single interior knot. Even though 

Michaud et al. implemented an approach to estimate the cost based on categorical and numeric demographic 

predictors, they only used an integer scale numeric variable, age, to develop the spline models.  

Another cost estimation related research was done by Almond et al. (2005) about the hospitalization costs of 

low birth weight on heavier and lighter infants from twin pairs born in the United States. To quantify the health 

status of a newborn, among these five variables, only birth weight factor is used to build a piecewise linear spline 

model. However, no categorical factors have been considered in the spline model. Almond et al. calculated 

hospitalization cost by adding generic expenses for each treatment performed on a newborn. The research lacks 

two aspects compared with our cost estimation methodology: (1) Not utilizing categorical variables in the spline 

model, and (2) Not using actual cost values to evaluate the performance of the underlying parametric model.  

Carides et al. (2000) presented a procedure for estimating the mean cumulative cost of long-term treatment on 

two clinical studies: (1) Heart failure clinical trial of left ventricular dysfunction, and (2) Ulcer treatment. A two-

stage estimator of survival cost with parametric regression, and a non-parametric regression with cubic smoothing 

splines are devised to exploit the underlying relationship between total treatment cost and survival time. However, 

only continuous covariates are used in the two-stage model and the effect of both categorical and numeric attributes 
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associated with each of these clinical studies was not considered.  

Valverde and Humphrey (2004) developed translog, Fourier, and cubic spline models to predict the cost effects 

of 20 individual bank mergers. The motivation behind this research was to accurately estimate the decrease in unit 

costs due to the merger. The underlying performance metric was the actual cost changes affecting all merging banks. 

Only two numeric variables were under consideration in the cubic spline models: (1) Value of loans, and (2) Value 

of securities (and other assets) while categorical merger bank attributes were not implemented in the cost 

estimation efforts. 

Table 3 highlights the most relevant cost estimation literature using clustering techniques/splines and type of 

data. A “+” sign indicates that the underlying research is in which specific area of application, what kind of approach 

is devised, and what type of data is used. For instance, Carides et al. (2000) implemented spline models to estimate 

clinical costs by using numeric data. As you notice, clustering techniques or spline models have not been used in 

manufacturing cost estimation efforts because of the complex relationships between categorical and numeric 

design attributes. 

Table 3. Overview of the most relevant research. 

Article  
Area of Application7 Estimation Approach Type of Data8 

Comments  
SCE CCE MCE 

Clusterin
g 

Splines C N M 

Angelis and Stamelos (2000) +       + Analogical relationships used 
Lee at al. (1998) +   +    + No ordinal or binary variables 
Xu and Khoshgoftaar (2004) +   +   +  Subjective attribute assignments 
Pahariya et al. (2009) +    +  +  Omitted majority of variables 

MIchaud et al. (2003)  +   +  +  
Considered one variable in 

splines 
Almond et al. (2005)  +   +  +  Used estimated medical costs 
Carides et al. (2000)  +   +  +  Promising estimation results 
Valverde and Humphrey (2004)     +  +  Limited data with poor accuracy 

3. Clustering cost estimation approach 

3.1. Grouping products 

Our clustering cost estimation approach is a two-phase process. In the first phase, we use all historical products 

to evaluate possible clustering formations and to build a cost estimation model for each cluster. The second phase 

is the cost prediction phase in which a new design is assessed for the best cluster fit and then the corresponding 

cost estimation model is used. According to design similarities between a new design and the existing clusters 

established in the first phase, we select the best cluster to which the new design should be assigned. Once the best 

cluster is found, the remaining part is to use the cluster specific cost estimation model to predict the manufacturing 

cost of the new design.  

3.2. Determining the number of clusters 

Unfortunately, there is no definitive methodology for determining the number of clusters (SAS Institute Inc., 

Cary, 2008). In a practical sense, graphically assessing the data scatter is a good start but when there are more than 

two or three dimensions (i.e., variables), this is not as practical as it first appears. Also, when the data is mixed with 

categorical and numeric values, it is very hard to identify clusters visually. 

Even though it is possible to have an idea of how many product groups exist in a database based on experts’ 

 
7 SCE: Software Cost Estimation, CCE: Clinical Cost Estimation, MCE: Manufacturing Cost Estimation 
8 C: Categorical, N: Numeric, M: Mixed Categorical and Numerical 
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opinions in a company, the groups are usually not distinct, or the given opinions do not represent the similarities 

among products perfectly. The distinction power of a similarity measure becomes very crucial in this phase because 

it forms the basis of these comparisons among products or products with clusters. During the cluster analysis stage, 

we need to choose the appropriate number of clusters. This is directly linked with how many cost estimation models 

are required to be built at the end of the first phase.  

There are few methods appropriate for mixed data but among these are Dalrymple-Alford’s 𝐶-index (1970), 

Baker and Hubert’s Gamma (1975) or Rousseeuw’s silhouette width (1987). These three statistics operate on a 

dissimilarity matrix and a vector of integers indicating the cluster number to which each observation is assigned.  

The 𝐶-index uses the sum of all the within cluster distances. The number of clusters which minimizes the 𝐶-

index should be chosen. Baker and Hubert (1975) devised an index called Gamma which was adopted from 

Goodman and Kruskal’s gamma (𝛾) (1954) to use in clustering applications. The index basically compares within 

cluster distances with between cluster distances (Everitt, 2010) where a pair of distances is considered consistent 

(inconsistent) if the within cluster distance is less (greater) than the between cluster distance (Li and Racine, 2007). 

Gamma was found to be one of the best performing statistics among the 30 considered by Milligan and Cooper 

(Milligan and Cooper, 1985). Another index which is applicable for mixed numeric and categorical data is 

Rousseeuw’s silhouette width (1987). It was devised to assess how well each object lies within its assigned cluster. 

Even though the silhouette width was first developed for partitioning around medoids, it is possible to use it in any 

context for which a distance matrix can be derived. The fundamental procedure behind this approach is plotting the 

average silhouette widths for the entire dataset that are obtained from different choices for the number of clusters 

and selecting the number of clusters which maximizes the index.  

Our methodology of selecting the appropriate number of clusters is neither deterministic nor arbitrary, but it is 

consistent with and also as simple as the one defined in the user manual of SAS for numeric data (SAS Institute Inc., 

Cary, 2008). We look for consensus among three statistics, namely 𝐶-index, Gamma, and silhouette width, and these 

statistics can be applied regardless of the type of data. Thus, there is no absolute optimal choice of number of 

clusters but rather the narrowing of possible choices to a few (or sometimes only one), superior numbers of clusters 

for the analyst to choose from. 

3.3. Choice of clustering algorithm 

The 𝑘-medoids algorithm was found to be more robust than any clustering technique that uses the error sum 

of squares (Kaufmann and Rousseeuw, 1987). Instead of minimizing the error sum of squares, it finds a set of 

representative observations (medoids) for each cluster and then allocates all other remaining observations to these 

clusters according to the closest distance to each medoid. This is advantageous in three aspects: (1) Possibility of 

clustering mixed data when a dissimilarity matrix can be derived, (2) Possibility of handling outliers, and (3) 

Elimination of making assumptions about underlying distributions such as multivariate normality.  

We employ the 𝑘 -medoids clustering algorithm as described in Kaufmann and Rousseeuw (1990). They 

implemented the 𝑘-medoids algorithm in a program called “PAM”. PAM consists of two phases. These phases are 

called BUILD and SWAP. The first phase, BUILD, constructs an initial solution of 𝑘 representative objects and the 

second phase, SWAP, attempts to improve the set of representative objects. The objective function of the algorithm 

is to minimize the sum of distances (dissimilarities) of each object to their closest representative object.  

3.4. Regression models 

For each cluster, a regression model is developed. In a regression model for the manufacturing cost estimation 

problem, the outcome (or dependent) variable is the manufacturing cost, and independent (explanatory) variables 



Sakinc and Smith                                           Journal of Economic Analysis 2023 2(3) 113-140 

122 

are the cost drivers (design attributes in this case). We assume a 5% confidence level for determining the 

significance of independent variables and their interactions. Checking interactions between variables is crucial 

because some variables create antagonistic or synergetic effects which may significantly impact the cost of a product. 

The variables and interaction terms are eliminated if these are irrelevant or have statistically non-significant 

contribution on the cost value.  

To reduce the computational load and to avoid over parameterization we developed linear regression models. 

However, the performance of quadratic regression models was also assessed without much effect on results. We 

constructed 𝑘 regression models where 𝑘 represents the number of clusters.  

4. Spline cost estimation approach 

Our spline cost estimation approach is also a two-phase process. In the first phase, we use all historical products 

to build a spline cost estimation model. There are several different spline functions available for practitioners to use 

for estimation purposes. However, the main concern is handling mixed numeric and categorical data. The second 

phase is the cost prediction phase in which the manufacturing cost of a new design is assessed.  

In this research, we need to model complex relationships of categorical and numeric variables. A range of kernel 

regression methods have been proposed to model such relationships (Ma et al., 2014). We used the same approach 

as described in Racine et al. (2014) to accommodate the existence of categorical and numeric design attributes since 

the method demonstrates robust performance on both simulated and real world data without breaking the data 

into subsets of continuous only and categorical only variables. Racine et al. (2014) proposed tensor-product 

polynomial splines weighted by kernel functions method to estimate the unknown conditional mean in the location-

scale model.  

Racine et al. (2014) implemented their work in R with a package called “crs” (Nie and Racine, 2012). The 

package is appealing for applied researchers because it uses a framework for nonparametric regression splines to 

address the existence of categorical and numeric variables. We used the same package in R and applied it to our 

cost estimation problems.  

There are two common approaches to determine the location of knots (Audet et al., 2009): (1) Knots can be 

placed based on equally spaced quantiles where the number of observations in each segment is equal or (2) Knots 

can be placed at equally spaced intervals. The “crs” package has the flexibility to use either option but most 

significantly, it chooses the knot placement strategy automatically based on whichever method provides better 

output.  

The package “crs” offers two search options to optimize the number of interior knots along with the value of 

bandwidths – smoothing parameter for categorical variable: (1) Exhaustive search or (2) Non-smooth optimization 

by mesh adaptive direct search, NOMAD (Audet et al., 2009). The number of interior knots for each continuous 

predictor is an integer value and the ranges for each categorical predictor is a value between [0,1]. Clearly, using 

an enumeration-based method such as exhaustive search might be computationally expensive for large datasets 

considering the number of categorical and numeric variables. In the “crs” package, the NOMAD approach was 

adopted to leverage recent advances in mixed-integer problems and to avoid the computational burden of using a 

brute-force method. Note that in some cases, the optimal spline degree is found to be zero, and the bandwidth is 

one. It means the corresponding variables are automatically removed from the model.  

5. Test cases and results 

In this section, we apply our manufacturing cost estimation methodology on four datasets from three different 

industries. We present these real-world problems from least to most complexity according to their sizes in terms of 
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number of numeric and categorical variables and observations. The data was collected from socks, electromagnetic 

parts, and plastic tools manufacturing factories in Ankara and Konya, Turkey. Mixed numeric and categorical design 

attributes, cost drivers, or other variables comprise in these datasets. Due to the confidentiality agreements that 

were signed with these companies, we cannot state any brand names or product codes. Note that these data sets 

are diverse and representative but do not cover the realm of cost estimation possibilities. Therefore, the results 

presented herein cannot be assumed to be fully generalizable.  

Because of the relative smallness of the data sets, we leverage the data fully. We use leave-one-out cross-

validation in our study to validate the performance of the estimation models that are being constructed. An 

observation is left out to test a cost estimation model that is built or trained with the remaining observations in the 

dataset. The observation being left out for every replication can be considered as an external test data point since 

it is not used in the cluster analysis nor model building phases.  

For clusters, first, we conduct a cluster analysis and then build cluster specific cost estimation models based on 

the entire data except the left-out observation. Second, we find the cluster in which the left-out observation falls. 

Finally, we test the corresponding cluster specific estimation model with the left-out data point. With the same logic, 

first we build a spline model leaving one product out of the data sample. Second, we evaluate the spline model 

validity with the left-out observation point.  

Figure 3 gives the overall structure of our proposed approaches to manufacturing cost estimation. Next, we 

describe the case studies and data sets. 

 

Figure 3. Summary of the proposed manufacturing cost estimation methodologies. 

5.1. Company and dataset descriptions 
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We thought it is very important to validate and demonstrate our proposed methods on actual cost estimation 

data rather than simulated data sets. Actual data can be imprecise and sparse. These are qualities that complicate 

cost estimation, and our data sets reflect this. 

5.1.1. Socks manufacturing data 

The first application problem dataset was collected from a socks manufacturer which produces copyrighted and 

licensed socks for some major brands in Europe and USA. Their range of products consists of sports, casual, and 

formal/dress socks for women, men, children, and infants. The manufacturing processes include pattern design, 

knitting, toe seam, washing-softening, pattern printing, final quality control, and packaging. Steam, silicon, and 

antibacterial washing are the types of washing-softening operations. In the printing department, the company can 

apply lithographs, holograms, and heat transfer, embroidery, rubber, acrylonitrile butadiene styrene (ABS), and 

caviar bead prints.  

The dataset that we collected from the company’s database contains information for 76 products of women’s 

and men’s socks. There are nine variables associated with these products, and eight of these variables are qualitative 

(categorical), namely raw material, pattern, elasticity, woven tag, heel style, leg style, fabric type, and gender. The 

only quantitative variable measured on a continuous scale in this dataset is the actual cost which is recorded in 

Turkish Lira (TL) money units. Table 4 is the summary of the dataset and associated attributes. The columns of the 

table are variable name, data type, variable type, and categories (for categorical data) or range (for numeric data) 

from left to right, respectively. For nominal variables, the order of categories is not important since there is no logical 

transition between categories. However, for ordinal variables, categories represent the order of the labels from the 

lowest to the highest category in its ordinal scale. For instance, elasticity is an ordinal variable that can take a value 

from “None” to “Double”. In this case, “None” represents the lowest elasticity level and “Double” represents the 

highest elasticity level of the sock material. 

Table 4. Summary of the socks manufacturing dataset. 

Variable Name Data Type Variable Type Categories/Range 

Raw Material Categorical Nominal 

Bamboo Lycra 
Cotton Lycra 

Cotton Coolmax Lycra 
Organic Cotton Lycra 

Modal Lycra 

Pattern Categorical Symmetric Binary 
Yes 
No 

Elasticity Categorical Ordinal 

None 
Plain 
Derby 
Curly 
Double 

Woven Tag Categorical Symmetric Binary 
None 
Label 

Heel Categorical Symmetric Binary 
None 
Plain 

Leg Style Categorical Ordinal 

None 
Short 

Medium 
Long 

Fabric Type Categorical Symmetric Binary 
Plain 
Towel 

Gender Categorical Symmetric Binary 
Women 
Men 

Actual Cost Numeric Interval Scale [0, ∞) 
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5.1.2. Electrical grounding parts data – tubular cable lugs 

The second application problem dataset was collected from an electromagnetic parts manufacturer which 

produces lightening protection elements, grounding materials, metal masts for various purposes, and cabins for 

specific purposes. Steel, copper, stainless steel, aluminum, brass, bronze, cast iron, plastic, and concrete are the 

primary raw materials used to manufacture these static grounding systems. In the facility, they can coat these 

materials with electro galvanization, hot deep galvanization, electro copper coating, electro tin coating, electro 

chromium-nickel (Cr-Ni) coating, black insulation, and green-yellow insulation.  

The dataset that we collected from the company’s database contains information for various tubular cable lugs 

of 68 observations. There are 12 variables associated with these 68 observations, namely lug type, cross-section, 

hole diameter, number of holes, gap between holes, material weight, process time, inner diameter, outer diameter, 

coating type, coating time, and the actual cost. Ten of these variables are quantitative attributes and nine of them 

are recorded on continuous scales. These nine continuous valued variables are cross-section, hole diameter, gap 

between holes, material weight, process time, inner diameter, outer diameter, coating time, and the actual cost, and 

their units are recorded in mm2, mm, mm, kg, mm, mm, minutes, and TL, respectively. The remaining one 

quantitative variable takes integer values. The label of the strictly integer valued quantitative variable is the number 

of holes, and it does not have any measurement units. There are at most two holes on a lug and the minimum number 

of holes is zero. DIN, forend, long, standard, and forend standard are the categories of the variable lug type. Table 5 

is the summary of the dataset and its associated attributes. 

5.1.3. Lightening protection parts data – air rods 

The third application problem dataset was collected from the same electromagnetic parts manufacturer as in 

the second problem and includes information about 197 air rods for lightening protection purposes. In the dataset, 

there are 10 variables associated with these 197 observations. Five of these variables take continuous numeric 

values and the remaining five are categorical labels. The numeric variables are rod diameter, rod length, screw size, 

material weight, and the actual cost. The values of these variables are measured with these units, respectively: mm, 

mm, mm, kg, and TLs. The screw size takes a value of zero when there is no screw used, and the actual minimum 

screw size is 8.5 mm. The categorical variables are screw type, main material, coating, raw material, and screw nut 

coating. In Table 6 the summary of the dataset and its associated attributes are shown.  

Table 5. Summary of the tubular cable lugs manufacturing dataset. 

Variable Name Data Type Variable Type Categories/Range 

Lug Type Categorical Nominal 

DIN 
Forend 

Forend Standard 
Long 

Standard 
Cross-section Numeric Interval Scale [0, ∞) 
Hole Diameter Numeric Interval Scale [0, ∞) 
Number of Holes Numeric Interval Scale 0, 1, 2, … 
Gap b/w Holes Numeric Interval Scale [0, ∞) 
Material Weight Numeric Interval Scale [0, ∞) 
Process Time Numeric Interval Scale [0, ∞) 
Inner Diameter Numeric Interval Scale [0, ∞) 
Outer Diameter Numeric Interval Scale [0, ∞) 

Coating Categorical Nominal 
None 
Tin 

Coating Time Numeric Interval Scale [0, ∞) 
Actual Cost Numeric Interval Scale [0, ∞) 
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Table 6. Summary of the air rods manufacturing dataset. 

Variable Name Data Type Variable Type Categories/Range 
Rod Diameter Numeric Interval Scale [16, ∞) 
Rod Length Numeric Interval Scale [150, 6000] 
Screw Size Numeric Interval Scale [8.5, 16] 

Screw Type  Categorical Nominal 
None 

Interior Screw 
Exterior Screw 

Material Weight Numeric Interval Scale [0, ∞) 

Main Material Categorical Nominal 

Aluminum 
Copper 

Iron-Steel 
Bronze 

Gray Cast Iron 
Stainless Steel 

Brass 
Plastic 

Coating Categorical Nominal 

No Coating 
Electro-Galvanizing 
Hot Dip Galvanizing 

Electrodeposited Copper 
Electrodeposited Tin 
Electrodeposited Cr-Ni 

Black Insulation 
Yellow Green Insulation 

Raw Material Categorical Nominal 

Aluminum Rod Ø16 
Aluminum Rod Ø20 

Brass Rod Ø16 
Brass Rod Ø20 

Copper Rod 16 x 3000 
Copper Rod 16 x 3500 
Copper Rod 20 x 3000 
Copper Rod 20 x 6000 
Stainless Rod Ø16 
Stainless Rod Ø20 
Transmission Ø16 
Transmission Ø20 

Screw Nut Coating Categorical Nominal 

No Screw Nut 
Non-Coated 
Galvanized 
Stainless 
Brass 

Actual Cost Numeric Interval Scale [0, ∞) 

5.1.4. Plastic products data 

The last dataset was taken from a plastic parts manufacturer which produces kitchenware, food and non-food 

storage containers, and salad, pastry, bathroom, and hanger accessories. In this dataset, there are many products 

with completely different physical shapes. However, we may group them according to their raw material types, 

manufacturing processes/operations, or some other factors. The dataset covers 51 variables for 130 plastic 

products. There are ten main categories of variables, raw material, press, vacuum, paint, sticker, wall plug, labor 

complexity, and actual cost. There are 13 variables under the raw material category where 12 of them are binary 

and one is numeric. These 12 variables represent the type of raw material such as anti-shock, acrylonitrile 

butadiene styrene (ABS), poly carbon, and carbon fiber. If a material is used in the main material mixture for a 

particular product, the value of the underlying material variable takes one, otherwise zero. The only variable 
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measured on a continuous scale is mixture weight under the raw material subject. It is recorded in grams. The 

second variable category is press, which stands for the pressing process. There are three machine groups in the 

company that can perform press operations. Tederic, TSP, and Haitian are the names of these machine groups. There 

are 11, eight, and four different machines under the Tederic, TSP, and Haitian groups, respectively. Every machine 

corresponds to a variable in the dataset. There can be multiple alternative machines to perform the same operation; 

however, if a machine is used for any step of production for a particular product, its variable takes a numeric value 

representing the machining time. If the underlying machine is not used for that product, the value of that machine’s 

variable takes a value of zero. The next variable category is for the vacuuming process. There are two variables 

under the vacuum topic: (1) Poly vinyl chloride (PVC) type for the vacuuming process and (2) the number of 

vacuums required. The PVC type is a categorical variable and the number of vacuums takes discrete numeric values. 

Under the boxing category, there are seven variables. Six of these variables are numeric variables and one of them 

is a categorical variable. These variables are number of items in a box, net weight, gross weight, length, width, depth 

of the box, and the type of the boxing material. Each remaining category corresponds to a single variable. Package, 

paint material weight, sticker, wall plug, labor complexity, and actual cost are, respectively, binary, numeric, binary, 

binary, ordinal, and numeric variables. The unit of the paint material weight is grams. Also, the actual cost is 

recorded in TLs. Furthermore, the labor complexity is tracked according to the complexity of the manufacturing and 

assembly operations and ranked from 1 (easiest) to 3 (most complex), sequentially. In Table 7, the summary of the 

dataset and its associated attributes are shown.  

We termed the application problems dataset 1 (DS 1), dataset 2 (DS 2), dataset 3 (DS 3), and dataset 4 (DS 4) 

for the socks manufacturing, the tubular cable lugs, the air rods, and the plastic products problem sets, respectively.  

5.2. Cluster analysis and the number of clusters 

As discussed earlier we used Kaufmann and Rousseeuw’s (2022) 𝑘-medoids algorithm as it was implemented 

in “PAM”. The first target is to determine the appropriate number of clusters. The 𝐶-index, the Gamma, and the 

average silhouette width graphs are the primary tools to choose the appropriate number of clusters. We plotted the 

values of the underlying indices from 2 to 20 clusters. As expected, the value of Gamma and the average silhouette 

width increase as the number of clusters increases. The value of the 𝐶-index decreases as the number of clusters 

increases which is consistent with the pattern of the other two indices. The graphs of these three indices with 

respect to the number of clusters are given in Figures 4 through 7 for test cases DS 1 through DS 4, respectively.  

Remember that our policy is to seek a consensus among these three graphs. For DS 1, a settlement point of the 

indices is seven clusters as shown in Figure 4 with the black points where a local trough is observed right before a 

dramatic jump in the 𝐶-index. Furthermore, at the point of seven clusters, local peaks can be observed one step 

before the sudden drops in Gamma and silhouette width trends. For DS 2, the silhouette width does not have any 

value higher than 0.5. However, a local peak is observed at 11 clusters. When we compare the performance of the 

other two indices with the silhouette width, 11 is a reasonable value as the appropriate number of clusters. 

Furthermore, after 11 clusters, the cluster contents become unbalanced where too many observations accumulated 

in some groups. For DS 3, we picked the point where the silhouette width goes above 0.5 for the first time because 

a value above 0.5 indicates a robust clustering structure. After 14 clusters, the value of silhouette width stagnates 

right below the 0.5 line. If we check the consistency of silhouette width with the other two statistics, we can see that 

14 clusters are appropriate. For DS 4, the silhouette width never moves higher than 0.5, but there is a sudden drop 

in the 𝐶-index value at 10 clusters. When the Gamma index is considered, the value increases slowly to the point at 

10 clusters and after that it becomes stable. Combining the information derived from these statistics, we can 

conclude that 10 is a proper value. There are several other possible points that these indices suggest, but 7, 11, 14, 

and 10 are the most conspicuous points for DS 1, DS 2, DS 3 and DS 4, respectively, when we monitor these graphs 
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from left to right simultaneously.  

Table 7. Summary of the plastic products manufacturing dataset. 

 

Table 8 shows the number of observations allocated to each cluster using 𝑘 -medoids based on the chosen 

number of clusters for each application dataset. When we analyze the individual observations in each cluster, it is 

easy to see that the categorical variables play an important role in forming the cluster contents. Also, we plotted the 

minimum (min), maximum (max), and average (mean) actual cost values of products allocated in each cluster in 

Variable Name Data Type Variable Type Categories/Range 

Cristal Categorical Symmetric Binary Yes, No 
Anti-Shock Categorical Symmetric Binary Yes, No 
PP Categorical Symmetric Binary Yes, No 
ABS Categorical Symmetric Binary Yes, No 
Poly Carbon Categorical Symmetric Binary Yes, No 
NAT ABS Categorical Symmetric Binary Yes, No 
Randum Categorical Symmetric Binary Yes, No 
ESM Categorical Symmetric Binary Yes, No 
i20 Categorical Symmetric Binary Yes, No 
Carbon Fiber Categorical Symmetric Binary Yes, No 
Stainless Steel Categorical Symmetric Binary Yes, No 
PVC Categorical Symmetric Binary Yes, No 
Weight Numeric Interval Scale [0, ∞) 
Tedeceric 100_1 Numeric Interval Scale [0, ∞) 
Tedeceric 100_2 Numeric Interval Scale [0, ∞) 
Tedeceric 110 Numeric Interval Scale [0, ∞) 
Tedeceric 120 Numeric Interval Scale [0, ∞) 
Tedeceric 140 Numeric Interval Scale [0, ∞) 
Tedeceric 188_1 Numeric Interval Scale [0, ∞) 
Tedeceric 188_2 Numeric Interval Scale [0, ∞) 
Tedeceric 188_3 Numeric Interval Scale [0, ∞) 
Tedeceric 230_1 Numeric Interval Scale [0, ∞) 
Tedeceric 230_2 Numeric Interval Scale [0, ∞) 
Tedeceric 280 Numeric Interval Scale [0, ∞) 
TSP 120_1 Numeric Interval Scale [0, ∞) 
TSP 120_2 Numeric Interval Scale [0, ∞) 
TSP 150_1 Numeric Interval Scale [0, ∞) 
TSP 150_2 Numeric Interval Scale [0, ∞) 
TSP 220 Numeric Interval Scale [0, ∞) 
TSP 250 Numeric Interval Scale [0, ∞) 
TSP 360_1 Numeric Interval Scale [0, ∞) 
TSP 360_2 Numeric Interval Scale [0, ∞) 
Haitian 110 Numeric Interval Scale [0, ∞) 
Haitian 150_1 Numeric Interval Scale [0, ∞) 
Haitian 150_2 Numeric Interval Scale [0, ∞) 
Haitian 250 Numeric Interval Scale [0, ∞) 
PVC Type  Categorical Ordinal 0, 15, 20 
# of Vacuums Numeric Interval Scale [0, ∞) 
# in box Numeric Interval Scale 1, 2, 3, … 
Net Weight Numeric Interval Scale [0, ∞) 
Gross Weight Numeric Interval Scale [0, ∞) 
Length Numeric Interval Scale [0, ∞) 
Width Numeric Interval Scale [0, ∞) 
Depth Numeric Interval Scale [0, ∞) 

Type Categorical Nominal 
Blister, Polybag, Display Box, Bound, Card, 

PVC Shrink, Sticker, Box 
Package Categorical Symmetric Binary Yes, No 
Paint Weight Numeric Interval Scale [0, ∞) 
Sticker Categorical Symmetric Binary Yes, No 
Wall Plug Categorical Symmetric Binary Yes, No 
Labor Complexity Categorical Ordinal 1, 2, 3 
Actual Cost Numeric Interval Scale [0, ∞) 
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Figures 8 through 11 for DS 1 through DS 4, respectively. These graphs are provided to illustrate how actual cost 

values strongly overlap among clusters for the most cases. It is interesting to observe that the similarity of products 

does not necessarily follow the same similarity pattern of the actual cost values. Since multiple cost drivers 

contribute to product cost, there is no single factor determining the cluster contents. The interactions of multiple 

cost drivers are more influential than a single one for each product.  

 

Figure 4. 𝐶-index, Gamma and silhouette width plots for DS 1 of 76 products. 

 

Figure 5. 𝐶-index, Gamma and silhouette width plots for DS 2 of 68 products. 

 

Figure 6. 𝐶-index, Gamma and silhouette width plots for DS 3 of 197 products. 
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Figure 7. 𝐶-index, Gamma and silhouette width plots for DS 4 of 130 products. 

Table 8. The number of observations in each cluster for the test cases. 

Cluster No DS 1 DS 2 DS 3 DS 4 
1 37 10 26 24 
2 11 9 23 20 
3 11 8 23 17 
4 6 8 17 16 
5 5 7 16 15 
6 3 5 16 10 
7 3 5 14 8 
8  5 13 8 
9  4 9 7 
10  4 9 5 
11  3 8  
12   8  
13   8  
14   7  

 

 

Figure 8. The minimum (min), maximum (max), and average (mean) actual cost values of objects allocated in 

each cluster for DS 1. 
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Figure 9. The minimum (min), maximum (max), and average (mean) actual cost values of objects allocated in 

each cluster for DS 2. 

 

Figure 10. The minimum (min), maximum (max), and average (mean) actual cost values of objects allocated in 

each cluster for DS 3. 

 

Figure 11. The minimum (min), maximum (max), and average (mean) actual cost values of objects allocated in 

each cluster for DS 4. 
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5.3 Spline model parameters 

As discussed earlier we used the R package called “crs” to build spline models in the presence of categorical and 

numeric design attributes, but none of the continuous predictors came out to be a higher degree than cubic splines 

considering the cross-validated set of parameters. When the polynomial degree of a predictor is zero, the variable 

is automatically removed from the spline model due to its irrelevance. We ran the spline model script with both 

“additive” and “tensor” inputs initially. The results show that using tensor products (that is, including interaction 

terms) provided slightly more accurate results. For the final input parameter, “knots”, we let the cross-validation 

decide the best knot placement strategy. See Table 9 for the complete set of parameters used for the spline models. 

Table 9. The R “crs” function input parameters used to build the spline models. 

Parameter  Value 

degree.max 10 
degree.min  0 
segments.max 10 
segments.min   1 
cv NOMAD 
cv.func cv.ls 
complexity degree-knots 
basis tensor 
knots auto 

5.4 Results and discussion 

As we discussed earlier, we used leave-one-out cross-validation to leverage the data for both validation and 

model building. Without proper validation, our methodology would not have credibility to be used in a real -life 

business environment. This validation module is fully integrated in the same R script.  

In Table 10, we present the performance metrics of each cost estimation approach, termed CLU (clustering), 

SPL (splines), and REG (regression) for the four test cases, DS 1, DS 2, DS 3, and DS 4. These metrics are the mean 

absolute relative error (MARE) and the max absolute relative error (Max ARE) over the validated predictions for 

each product. Notice that SPL does not have error defined for DS 1 in the table since this dataset does not contain 

any continuous predictors to form a spline basis. The minimum values of MARE and Max ARE are depicted in bold 

in Table 10 for each dataset. According to the MARE values, the most accurate cost estimation approach is CLU based 

on overall performance. However, SPL generates slightly more accurate predictions for DS 3 compared to CLU. 

Clearly, REG was outperformed by both CLU and SPL. It is a little difficult to decide which cost estimation method is 

superior between CLU and SPL. SPL is not applicable to the first dataset (DS 1) since there are no continuous 

predictors to build a spline basis. This is a disadvantage for wholly categorical or qualitative datasets. A second 

aspect is that SPL was significantly bettered by CLU for DS 2. But, when we consider Max ARE values, SPL did better 

than CLU for two of the three test cases. Of paramount importance, both CLU and SPL were able to predict the 

manufacturing cost of products with good accuracy, especially compared to the often-used REG method. Figure 12 

shows the performance of the cost estimation methods over the four data application problems in terms of the 

MARE values given in Table 10.  

We also evaluated the performance of spline models by setting the maximum polynomial degree to 1 to make a 

fair comparison between SPL and CLU, and SPL and REG because CLU and REG are basically linear models in our 

test cases. Furthermore, we removed the interaction terms in the spline models by setting the “basis” input as 

“additive” to eliminate interaction terms. The performance difference between the default tensor product SPL 

model and the linear additive SPL model was minimal and these changes did not affect its overall accuracy. The 
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linear additive SPL model still outperformed REG by far. We can conclude that even considering suboptimal spline 

model parameters, SPL is a better alternative than REG.  

Table 10. Performance metrics of each cost estimation model for the application problems. 

MARE   

  CLU SPL REG 

 DS 1 6.25% N/A 8.54% 
 DS 2 4.98% 38.70% 49.82% 
 DS 3 5.81% 4.08% 15.42% 
 DS 4 12.39% 17.55% 33.83% 
Max ARE     

  CLU SPL REG 
 DS 1 49.12% N/A 49.82% 
 DS 2 46.67% 162.01% 429.52% 
 DS 3 56.04% 26.23% 64.36% 
 DS 4 203.54% 94.73% 233.79% 

 

 

Figure 12. Performance of the cost estimation approaches in terms of MARE. 

We used a paired t-test to evaluate the significance of the mean of the differences in AREs. In Table 11, p-values 

for the paired t-tests on the mean of the differences are given. All cost estimation approaches produce significantly 

different ARE results than each other at a 95% confidence level. Therefore, we can conclude that there is a clear 

dominance in the performance of CLU compared to REG and SPL compared to REG. However, for the CLU and SPL 

pair, we could not conclude if one of them is superior over the other because for only DS 2, CLU demonstrates a clear 

dominance when MARE values are considered. For DS 3, SPL turns out to be the best approach but very close in 

performance to CLU. For the last application dataset, DS 4, CLU finds slightly more accurate estimated values than 

SPL.  

We also considered the sensitivity of MARE with respect to the number of clusters for CLU. As expected, MARE 

decreases as the number of clusters increases and finally it converges to a limit value. The limit MARE values are 

around 5%, 3%, 4%, and 11% for the test cases DS 1 through DS 4, respectively. Figure 13 shows the change in 

MARE values when the number of clusters increases for each application dataset. Even though increasing the 

number of clusters results in more accurate estimates, it might be likely to be over-parameterized which results in 

a less robust and less dependable model.  
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Table 11. p-values for the paired t-tests of the pairs of cost estimation approaches. 

DS 1 REG SPL 

CLU 9.12 × 10−8 N/A 
SPL N/A  

DS 2 REG SPL 
CLU 6.65 × 10−9 2.68 × 10−9 
SPL 0.0003  

DS 3 REG SPL 

CLU 2.52 × 10−17 3.44 × 10−15 
SPL 3.62 × 10−18  

DS 4 REG SPL 
CLU 1.50 × 10−22 1.33 × 10−18 
SPL 2.58 × 10−25  

 

 

Figure 13. MARE vs. number of clusters of each application problem for CLU. 

We provide the 𝑅2 values for each cost estimation method in Table 12. The maximum 𝑅2 (R-sq) value for each 

data set is in bold to show the best model fit among the three methods. The 𝑅2 values of CLU and REG from the 

table show that finding a well-suited model for DS 1 is challenging due to lack of relevant continuous predictors in 

the dataset. Adding more variables to the cost estimation for DS 1 might increase the true explanatory power of the 

models but unfortunately the dataset was strictly limited to only eight categorical predictors. However, this dataset 

is atypical as most manufactured products include both numeric and categorical cost drivers. For the other datasets, 
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each cost estimation approach can explain the total variability with a high 𝑅2 . For a better illustration of 𝑅2 values, 

we plotted the fitted values (predicted cost) by observed values (actual cost) in Figures 14 through 17 for DS1 

through DS 4, respectively.  

Table 12. Coefficient of determination (𝑅2) values for the MCE approaches. 

𝑅2 CLU SPL REG 

DS 1 63.49% N/A 53.19% 
DS 2 99.94% 91.50% 84.63% 
DS 3 96.83% 99.52% 90.49% 
DS 4 93.69% 88.46% 76.47% 

 

 

Figure 14. Fitted values (predicted cost) vs. observed values (actual cost) along with the 𝑅2 values (R-Sq) for DS 

1. 

 

 

Figure 15. Fitted values (predicted cost) vs. observed values (actual cost) along with the 𝑅2 values (R-Sq) for DS 

2. 

6. Manufacturing cost estimation user interface 

This software system is available for open access at the link below: https://github.com/erensakinc/MCE. 

This GitHub repository includes full directions for running the software and also includes the data sets we used 

in this paper. We built an interface using the R package called “shiny” (Chang, 2016). It is a web application 

framework to turn R scripts into interactive web applications. It has two main components: (1) Server-side 

component that is responsible for the computational tasks and rendering plots and tables, and (2) User interface 

component that is the actual interactive web interface with input entering elements such as check boxes, radio and  

https://github.com/erensakinc/MCE
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Figure 16. Fitted values (predicted cost) vs. observed values (actual cost) along with the 𝑅2 values (R-Sq) for DS 

3. 

 

 

Figure 17. Fitted values (predicted cost) vs. observed values (actual cost) along with the 𝑅2 values (R-Sq) for DS 

4. 

action buttons, and other numeric and text input boxes. The interface is a web-based application, and it is published 

online for cost estimation practitioners. It consists of four main tabs: (1) Load Data, (2) CLU, (3) SPL, and (4) REG.  

The “Load Data” tab is for uploading a dataset to the system in a comma separated values format. In this tab, 

the user enters a vector representing the variable types as discussed earlier. The “CLU” tab is for the clustering-

based cost estimation approach. It has two main parts. The first part has three inputs, namely the minimum number 

of clusters, the maximum number of clusters, and a red dot to mark the selected number of clusters on the graphs. 

The second part has two inputs, the best number of clusters and the polynomial regression model degree: linear, 

quadratic, or a higher degree. The interface passes the given information to the server and the server-side 

application renders the C-index, Gamma, and silhouette width graphs based on the minimum and maximum number 

of clusters. The user is required to enter the preferred number of clusters to proceed to the cost estimation step. 

When the selected number of clusters is entered, the application builds the final cluster contents and cluster specific 

estimation models and then produces the actual cost vs. predicted cost graph along with a table of predicted values 

(the column name is y_hat) for each data point. In this table, there is an extra column called “cluster” that shows in 

which cluster the specific data point is classified. A screenshot of the CLU tab after solving a cost estimation problem 

is given in Figure 18. 

The “SPL” tab is for the spline-based cost estimation approach. The spline model inputs are maximum and 

minimum spline degrees, maximum and minimum number of segments, optimization complexity, knot placement 

strategy, spline basis, optimization algorithm, and the cross-validation function. All inputs are passed to the “crs” 

package and then a categorical spline regression model is constructed to predict manufacturing costs. The output 
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is like the “CLU” tab’s output. It generates a graph of the actual vs. predicted costs and a table of predicted values.  

The last tab, “REG”, represents the traditional cost estimation approach, a single polynomial regression model. 

It only has a single input for the regression degree. Once the regression degree is determined (selected) a similar 

output is generated where the actual vs. predicted cost graph and the table of predicted values are shown.  

 

 

Figure 18. Clustering based cost estimation (CLU) application tab after analysis.  

7. Conclusions 

In this paper, we investigated ways of using piecewise functions formed by either clustering or splines to predict 

the manufacturing cost of a product prior to actually manufacturing it. In real applications, the most likely scenario 

is to have a set of data about the products and their cost related attributes (drivers) where these attributes are 

mixed categorical and numerical, as we consider. The accuracies of the two novel methodologies presented in this 

work are assessed in comparison to each other and to also a regression model with the absence of clustering 

approaches (this latter approach being common practice in industry). We did not compare with some other data 

driven alternatives such as neural networks for a few reasons. First, neural networks require large data sets to 

perform adequately on multi-variate prediction and for cost estimation, often data sets are quite small. Second, 

building and validating a neural network is quite artful requiring considerable experience and judgement on the 

part of the analyst. 

Our results show that predictions are more accurate taking a clustering approach, which could translate into 

more profitability and sales to organizations because they could price their manufactured goods appropriately. This 

would avoid too low pricing which could result in less profitability or even losses or too high pricing which could 

deter sales by not being competitive. One limitation of our approach is that the future product to be manufactured 

is related in a cost manner to past products whose manufacturing costs are already known. The known cost data 

must be representative as this method is data driven and is largely dependent on the integrity of the data used. 

Another consideration is that the number of clusters must be ascertained. While using the metrics discussed in the 
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paper simplifies this process, it is not automatic. Finally, the computational effort is quite modest for these small 

sized data sets but might be more of a concern for very large data sets. 

One existing method of cost estimation is regression trees, and this does offer a useful future research focus. A 

regression tree is a variant of decision trees where real-valued functions are approximated. The regression tree 

methodology may be generalized to manufacturing cost estimation since it is not limited to continuous predictors 

only. That is, using mixed numeric and categorical data is allowed in the regression tree building process.  

In this research, irrelevant predictors are removed from the CLU, SPL, and REG models as described earlier. 

Future research may consider the information gain criterion when deciding on the inclusion of a candidate predictor 

in the cost estimation model. This approach could yield an information rich but parsimonious set of cost drivers to 

be used in predicting cost using our clustering or spline approach. A further refinement may be to use a dimension 

reduction method such as principal component analysis in lieu of the cost drivers themselves.  
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