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ABSTRACT 

The goal of this paper is to work out a poststratification method for estimating in-time 1  indicators for 

international end-to-end delivery processes when 

• collected data cannot cover all the strata making up the logistics universe to be surveyed, 

• the true weights of the strata - needed to correct biases in representativeness caused by disproportionate 

sampling and incomplete coverage - are unknown but can be inferred from marginal subtotals related to 

stratification criteria considered separately, rather than jointly, and conditional on each end of the delivery journey: 

outbound- versus inbound-specific2. Within this perspective, poststratification is used here to mean a statistical 

correction of measurements derived from incomplete stratified samples, an ex-post calibration aimed at yielding 

more accurate estimates based on an analysis of the data. Thus, we tackle instances where ex-ante assignment to 

strata is not a problem, but when surveying all strata is out of the question. 

 
1 The “On-Time In-Full” (OTIF) supply chain metric is pertinently named to signal the extent to which customers receive exactly what 
they ordered on the agreed date. However, in practice, “on time” and “in time” are considered synonymous, whereas semantically they 
are not. In the following text, “in time” is used to connote: “not late” and “punctuality” for the fact of arriving on or before the scheduled 
time. 
2 In postal jargon, for international exchanges, outbound (alt., inbound) logistics refers to mail collection (alt. delivery) operations from 
the sender (alt., to the addressee) in the country of origin (alt., destination). 
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For that purpose, an econometric model is designed 

• to link the discrete transport lead times, counted in days, of tested items to the specifics of their material 

characteristics (e.g. size/weight), as well as those of the routes they take through the distribution network (e.g. 

origin and destination zones), 

• and provide performance predictions for each of the strata, covered as well as non-covered. 

Benchmarking the multinomial cumulative logit regression against the negative binomial one reveals that delivery 

time had better be treated as an ordinal categorical system’s response, rather than as a ratio-scaled count. 

 

The model-based fitted and extrapolated estimates are then used as inputs to the ex-post weighting stage, 

which produces robust point- and interval-estimates of aggregate key performance indicators (KPIs) through 

bootstrapping. Simple linear programs provide two extreme weighting sets, one per country-to-country path: the 

first minimizes the KPIs’ values, while the second maximizes them.  

 

Probabilities of delivery within deadlines summarize distributions of delivery times better than their means and 

standard deviations, because logistical efforts to cut transit by one day must be enhanced more and more as it gets 

shortened. Three types of graphs are proposed to help visualize this exponential increase in the service quality 

required. The applicability of the methodology developed is demonstrated on the 2023 database of the 

International Post Corporation. In this case, the imprecision of the KPI estimates depends much more on the 

uncertainty caused by disturbances occurring during the first- and last-miles3, than on the imperfection of the 

information about the real weights of the strata.  

 

 

KEYWORDS 

End-to-End Logistics; Lead Time; Probability of Delivery Within Deadline; Incomplete Coverage; Poststratification; 

Ordinal Categorical Response; Count Variable; Multinomial Cumulative Logit Regression; Negative Binomial 

Regression; Linear Programming; Bootstrapping 

 

 
3 In the broadest sense the transportation industry attaches to these words: initial and final legs/stretches of the route. 
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1. Introduction 

Surveying end-to-end4 multi-firm cross-border distribution channels by testing the routing of items streamed 

through them is a complex task. Indeed, such universes are too vast and multi-sided to be fully covered and sampled 

proportionately. Encompassing all classes of objects carried, and every path they might pass through, is just 

unfeasible. Numerous strata remain unobserved and many more are barely sampled at all. To correct for biases 

caused by the resulting sample unrepresentativeness, missing measurements must be conjectured before applying 

any statistical redressing. On the data collected on covered strata, an econometric model - using the stratification 

criteria as predictors - can first be calibrated to infer measurements for the non-covered ones. Next, to obtain 

consistent aggregate estimates, the model-predicted strata-level measurements - either extrapolated (for non-

covered strata) or fitted (for covered strata) - need to be weight-averaged, according to the relative strata sizes in 

the universe. 

The present paper is probably the first to be published on the development such a comprehensive 

methodology and proving its applicability to the quality control of international transports, more specifically: postal 

services. The only related earlier work one can mention is the article of Caulkins et al. (1993) who formalized and 

compared variants of a scoring two-factor5 multiplicative equation to rate simultaneously the US domestic airlines’ 

promptness and the accessibility of the airports to which they fly, exploiting secondary data issued by the 

Department of Transportation: percentages of on-schedule landings, per company and per airport. Although they 

cared much about the fairness of the marks their model awards, they did not assess their statistical accuracy. 

Section 2 complements the present introduction by setting more precisely the stage: the cross-border delivery 

of the priority letter mail across Europe, tracked by the International Post Corporation (IPC), pursuant to the 

Directive 97/67/EC of the European Parliament and of The Council of 15 December 1997 on “common rules for the 

development of the internal market of Community postal services and the improvement of quality of service”6. 

Section 3 defines the problematic to be faced: the multidimensionality of the postal world to be supervised, 

the in-time indicators to be coursed, and the uncertainty about the real strata weights in the postal universe. In 

addition, it proposes a linear programming solution to deal with the resulting indeterminacy of key performance 

statistics. 

Section 4 goes over econometric specifications relevant for quantifying relationships between delivery times 

and their potentially determining factors. Thus, it reviews the literature on count and logistic regression models and 

shows how to adapt them to predict shipping times. 

Section 5 compares outputs from implementing both classes of models to the 2023 IPC data base: the negative 

binomial and the multinomial cumulative logit. It argues that delivery time should be treated as a categorical ordinal 

response, rather than as a ratio (or interval) measure. 

Section 6 demonstrates how the bootstrapping technique can be used to derive robust confidence intervals for 

probabilities of delivery within 𝕥 working days of the collection date: 𝐷. It completes the case by commenting on 

the most critical in-time delivery rates: i.e., the percentages delivered to addressees no later than 𝐷 + 5, the upper 

time limit set by the EU “for postal items of the fastest standard category”7. 

Section 7 concludes by discussing the limits of our approach, suggesting future lines of research, and 

highlighting the strengths of our contribution. 

 
4 "End-to-end routing is measured from the access point to the network to the point of delivery to the addressee” (endnote: *, L 15/25, in 
https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:31997L0067). 
5 In their own terms: “the conditional probability that a flight on airline 𝑖 will arrive on-time given that there are no local delays at the 
airport of arrival” and “the unconditional probability that a flight arriving at airport 𝑗 will encounter no local delays” (op. cit., p. 713). 
6 Cf. source referred to in footnote 4. 
7 Cf. the source referred to in footnote 4: Annex, L 15/25. 

https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:31997L0067
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All computer codes programmed in SAS (Statistical Analysis Software), to carry out the research work 

reported hereafter, are listed and commented at length in the Appendix. 

2. Heart of the matter: effectiveness of postal logistics from the end-customer’s viewpoint 

Timely, careful and cost-effective cross-border transportation of products demands intense, transparent and 

loyal collaboration from all parties involved in their routing. Therefore, the logistics of various Posts, who may 

fiercely compete against one another on domestic markets, must be aligned. Their mutual aid is called for to ensure 

that  

• mail collected from a sender in the origin country by a first player is not only efficiently carried up to its 

outbound handover-point,  

• but ultimately gets delivered by a second one from the latter’s inbound handover-point to the addressee in the 

destination country. 

By sharing a common systemic supply-chain vision, rivals become partners at least for their international 

service-lines. In this spirit, aware of the technological challenges ahead and convinced that a cooperative game is 

preferable to a zero-sum one, in 1989, the industry majors allied by joint-venturing into the International Post 

Corporation (IPC), which promotes the four coordination modes designed to streamline supply chains: “logistics 

synchronisation, information sharing, incentive alignment, and collective learning” (Simatupang et al., 2002, pp. 291-

301). 

2.1. International Post Corporation 

IPC was established as a cooperative association positioning itself as “the leading service provider of the global 

postal industry that provides leadership by driving service quality, interoperability and business-critical intelligence 

to support Posts in defending existing business and expanding into new growth areas” (https://www.ipc.be/). 

It currently has 26 members, from Posts operating in the Asia-Pacific region, Europe and North America. IPC 

services are used globally by over 180 posts worldwide. It provides platforms, programs and tools for their CEOs 

and senior managers to share best practice and discuss strategy. It also conducts market research on the industry 

and manages a system of incentive payments between operators for their delivery activities. Acting as both a carrot 

and a stick, IPC-driven remuneration agreements ensure that the focus is on quality-of-service (QoS) and foster 

data exchanges for tracked products. IPC also supports specific e-commerce endeavours designed to facilitate 

product returns and enhance the sustainability of postal logistics. Above all it actively promotes quality control 

initiatives. Since its inception, it has applied high standards to upgrade logistics procedures and performance. To 

this end, it has developed technological solutions to monitor and improve the QoS for international letters, packets 

and parcels. By scanning barcoded products at crucial stages of their end-to-end postal journey, IPC records events 

and pinpoints bottlenecks that may encumber their handling. Since such in-process information is unavailable for 

non-barcoded items – letters, and small e-commerce packets, called: “untracked mail” – IPC built the UNEXTM QoS-

measurement. 

2.2. UNEXTM 

The name UNEXTM results from the concatenation of the first syllables of two terms: first, UNIPOST meant to 

evoke joined forces amongst postal organizations and EXternal to signify that its methodology is independently 

regulated and audited by third parties, external to the Posts, to minimize risks of conflict of interests. UNEXTM is IPC 

core system quantifying the QoS provided to transport international single-piece priority letter mail. Using a 

mystery shopper approach, it mobilizes volunteer “panellists”, coached to act like ordinary customers sending or 
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receiving test items copycatting real mail. Monitoring closely the tour of the UNEXTM test pieces through the postal 

pipeline yields transit-times’ observations. To secure integrity and representativeness of such data all volunteer 

panellists are recruited, trained and supervised by an external market-research agency whose activities are hidden 

from IPC and their member Posts. All UNEXTM items are prepared centrally by this contractor, taking into account 

country-specific habits and national postal requirements in the countries of origin and destination, to ensure that 

these test items are indistinguishable from actual postal items processed between these countries. These test-

letters are then dispatched to the sender-panellists, with precise instructions about when and where they are to be 

inducted into the postal flows. 

Each UNEXTM envelope contains a radio frequency identifier, also known as an RFID tag or transponder: a 

small tracking device in sticker form that records its passage at critical points along its journey through the end-to-

end postal chain (from collection to delivery). This enables Posts to break down the logistics chain into stretches 

and so to bring much more detailed QoS signals to better target operational steps within the postal network and 

design specific action plans and corrective measures. 

Detailed feedback from panellists is collected via an online platform. The UNEXTM software package checks the 

consistency of every registration against guidelines, as well as in relation to the events tracked by the transponders 

(e.g., by ascertaining whether deliveries have exceptionally taken place over a weekend). The exact time the cross-

validated test-item spent within the postal circuit is determined and depending on whether or not it has arrived 

within the prescribed deadline, it will be counted as ‘in time’ or ‘late’. 

To fulfil specific requirements of various Posts and internal stakeholders (postal communities), IPC runs 

UNEXTM modules tailored to three objectives: regulation, operations and incentive-based remunerations. The 

operations modules produce detailed information on the processing of the test letters so that Posts can identify 

bottlenecks or weak spots, undertake root-cause analyses and follow-up with action plans. The UNEXTM TD module 

supplies independent and reliable QoS reports which assist Posts in setting the amounts of terminal dues to be 

exchanged, according to performances in compliance with agreed service standards. However, this article 

exclusively deals with the regulatory facet explained under 2.3. 

2.3. UNEXTM CEN module 

With the opening up of the postal European market on 15 December 1997 - marking the end of the postal 

operators' monopoly for cross-border single piece priority mail in many countries -, Posts are duty-bound to report 

on how they are fulfilling the universal service obligation imposed by the EU Postal Directive8. The injunctions 

specifying how to assess this universal service within Europe were detailed in the CEN standard: EN 13850:20209. 

The CEN standard serves as a kind of biblical compass, defining for European countries, regulatory postal QoS 

measurements on letter mail, the methodology to be followed, constraints to be respected, and degrees of freedom 

left, to  

• set up the stratification design, a necessary condition for a robust measurement,   

• discriminate in-time (coded:𝟏) test-items from delayed ones (coded: 𝟎),  

• aggregate the item-specific in-time binary indicators into representative and reliable proportions of successes,  

appraise the precision of these aggregate estimates of in-time delivery probabilities.  

Figure 1 maps the Posts tested via the UNEXTM-CEN module in 2023. 

 
8 Directive: https://eur-lex.europa.eu/eli/dir/1997/67/oj, and successive amendments: 
https://eur-lex.europa.eu/eli/dir/2002/39/oj, https://eur-lex.europa.eu/eli/dir/2008/6/oj. 
9 CEN stands for Centre Européen de Normalisation (https://www.cencenelec.eu/about-cen). Organized in Technical Committees 
(TC), CEN contributes to the development of European standards and releases technical documents relating to various types of 
products, materials, services and processes. The postal services are covered by TC 331 focusing on the standardization of various 
aspects of the QoS measurement, in order to increase the interoperability of postal networks and thereby improve the QoS. 

https://eur-lex.europa.eu/eli/dir/1997/67/oj
https://eur-lex.europa.eu/eli/dir/2002/39/oj
https://eur-lex.europa.eu/eli/dir/2008/6/oj
https://www.cencenelec.eu/about-cen


Bultez and Seghers                                               Journal of Economic Analysis 4(2) 91-155 

96 

 

 

Figure 1. Postal territories and operators. 

In application of the standard, IPC annually publishes postal QoS-levels reached in Europe10. Also, the UNEXTM-

CEN module gets regularly audited to certify its conformance to the CEN-norm. 

For 2023, IPC monitored 132,304 items, out of which 𝟏𝟎𝟓, 𝟖𝟖𝟗 records were screened and found valid. They 

were sent and/or received by 2,522 volunteer panellists, covering 710 country-to-country flows within Europe. 

Field studies are delimited by the country-to-Europe (Co2Eu) and Europe-to-country (Eu2Cd) streams to ensure that 

each national regulatory authority can monitor their territory from aggregate inbound and outbound outlooks. 

Therefore, all information needed to build the statistical design, and the sampling plan, is collected at the level of 

the whole country and is not broken down across individual country-to-country (Co2Cd) flows. Although RFID-tags 

allow the end-to-end process to be split into its detailed paths, UNEXTM CEN is solely concerned by the end-to-end 

in-time proportions from the customer perspective. 

 
10 https://www.ipc.be/services/operational-performance-services/unex/results./ 

https://www.ipc.be/services/operational-performance-services/unex/results
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3. Challenge: multidimensionality 

Table 1 defines the typology of test-items. It lists their features. 

 

Table 1. Coding of the discriminant mail characteristics. 

 

 

Indeed, the UNEXTM CEN-module evaluates the QoS offered by Posts for the end-to-end transfer of priority 

letters  

• of sizes/weights: 𝐵1_50𝑔, 𝐶5_50𝑔, 𝐶6_20𝑔,  

• franked via stamps, metering machine marks or pre-paid envelopes,  

• sent on either Monday, Tuesday, …., or Saturday,  

• from collection points located in either the capital, or a key-city, or rural town, 

• in the origin country: street boxes, postal counters or post offices and in-situ pickup,  

• to the recipient living in either the capital, or a key-city, or a rural town in the destination country. 
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3.1. Huge and compound universe 

The complexity of the postal logistic world to be monitored can best be grasped by delineating its stratification. 

The first column of Table 1 lists the fixed factors (𝑓 ∈ 𝓕)  regarded as predictors of priority cross-border mail 

delivery punctuality, hence, to be used as partitioning dimensions, according to their modes (𝑚(𝑓)). 

3.1.1. Stratification criteria 

These fixed factors consist of all the relevant shipping-related features that characterize each item to be handled: 

• its material nature: size/weight (𝑆𝑤), address labelling (𝑊𝑑), franking (𝐹𝑘), 

• and its sender-to-receiver journey: outbound (𝐶𝑜) and inbound (𝐶𝑑) countries, urbanization of areas 

where collection and delivery endpoints are located (𝑈𝑜,𝑈𝑑), sending weekday (𝑊𝑑). 

All together they form the set 𝓕 = {𝐶𝑜,𝑈𝑜, 𝑆𝑤, 𝐴𝑑, 𝐹𝑘,𝑊𝑑, 𝑃𝑙, 𝐶𝑑, 𝑈𝑑}  including the nine factors deemed 

discriminant by the experts commissioned by the European Committee For Standardization (CEN, 2020, section 6.4, 

pp. 21-22), “under the mandate given to CEN by the European Commission and the European Free Trade Association, 

and supports essential requirements of EU Directive(s)” to police postal cross-border Quality-of-Service (QoS) 

measurement systems (Ibidem, p. 3). 

Combining the modes of these nine traits yields the stratification tree, which in 𝑼𝑵𝑬𝑿𝑻𝑴-CEN counts largely 

more than two million branches, since theoretically the total number of strata (𝑇𝑁𝑆) results from the product of the 

cardinal numbers (| |) of the sets of modes (|𝑴𝒇|, ∀𝑓 ∈ 𝓕): 

𝑇𝑁𝑆 =∏|𝑴𝒇|

𝑓∈𝓕

=  2,892,672. 

However, the actual number of strata (𝐴𝑁𝑆) lies much lower, because many of them need to be assigned a zero 

weight because they do not exist. Indeed, the mode weights of the stratification criteria, other than outbound and 

inbound countries, vary according to either the origin or the destination of the mail. 

3.1.2. Strata weighting  

The information needed to design the testing is collected and processed at the country-to-Europe (Co2Eu) and 

Europe-to-country (Eu2Cd) levels (i.e. the fields of study), but it is operationalized in the measurement of country-

to-country (Co2Cd) links. In fact, IPC infers weights of modes (Ω𝑚) separately, one factor at a time, for11 

• factors related to origin-countries - i.e., 𝑓|𝐶𝑜 ∈ {𝑈𝑜, 𝑆𝑤, 𝐴𝑑, 𝐹𝑘,𝑊𝑑, 𝑃𝑙} - from the distributions of these 

modes in the real mail sent from every country of origin, i.e., per 𝐶𝑜, hence denoted by Ω𝑚(𝑓|𝐶𝑜); 

• factors related to destination-countries - i.e., 𝑓|𝐶𝑑 ∈ {𝑈𝑑} - from their distributions in the real mail sent 

to every country of destination, i.e., per 𝐶𝑑, hence denoted by Ω𝑚(𝑓|𝐶𝑑). 

Therefore, the subset of the strata formed by the items carried from origins in 𝐶𝑜  to destinations in 𝐶𝑑  - 

𝑆(𝐶𝑜2𝐶𝑑) - is defined by the following conjunctions (∩) of shipments characteristics: 

𝑆(𝐶𝑜2𝐶𝑑) ≡  {[(𝑈𝑜 ∩ 𝑆𝑤 ∩ 𝐴𝑑 ∩ 𝐹𝑘 ∩𝑊𝑑 ∩ 𝑃𝑙)|𝑪𝒐] ∩ [𝑈𝑑|𝑪𝒅]}. 

The upper part of Table 2 details (up to and including Output #1) how IPC has so far implemented the CEN 

guidelines for the computation of the conditional stream-specific strata weights (𝜔𝑠|𝐶𝑜2𝐶𝑑): thus, specific for every 

country-to-country 𝐶𝑜2𝐶𝑑-flow, i.e., for 𝑠 ∈ 𝑆(𝐶𝑜2𝐶𝑑), and for all 𝐶𝑜 & 𝐶𝑑 ≠ 𝐶𝑜 since domestic mail is out of 

the scope of 𝑼𝑵𝑬𝑿𝑻𝑴 . Formula (T2.1)  determines what CEN calls the standard weighting basis (SWB) and 

recommends “to define a proportional sample design” (op. cit., §H.4.1.3, p. 88).  

 
11 The notation is deliberately general, to allow extensions to encompass additional attributes and factors. 
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Table 2. Formalization of the standard weighting basis. 

 

However, according to the SWB, 𝜔𝑠|𝐶𝑜2𝐶𝑑  results from the product of the weights of the modes that specify 

stratum 𝑠, which is only valid if the distributions of modes are independent from one another across characteristics. 

CEN underlines that such an assumption may not hold, noting a counterexample: stamped envelops (𝑚(𝐹𝑘) = 𝑆𝑡) 

are less frequently inducted at the post office (𝑚(𝑃𝑙) = 𝑃𝑜) than metered ones (𝑚(𝐹𝑘) = 𝑀𝑡). Regrettably, given 

the lack of detailed information on the split of mail volumes per mix of characteristics, IPC has stuck to the SWB; 

however below, under 3.4, we revisit this limitation and explain how it can be relaxed. 

 

The second part of Table 2 (under Output #2: formula (T2.2) ) exposes how the SWB conditional, stream-

specific, strata weights should be adjusted - weighting them in turn by the 𝐶𝑜2𝐶𝑑 mail volume-shares (𝕧𝐶𝑜2𝐶𝑑) - 

to obtain the marginal weights: 𝜔𝑠|𝐶𝑜2𝐶𝑑
∗∗ , for 𝑠 ∈ 𝑆(𝐶𝑜2𝐶𝑑), needed to evaluate the overall end-to-end QoS provided 

jointly by all postal operators involved in mail delivery within Europe.  
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3.2. Ex-post weighting, necessity for sound diagnoses 

To warrant unbiased estimates from straightforward statistical processing, samples must be allocated 

proportionally to strata weights. However simple this type of plan is in principle, it is hard, if not impossible, to 

execute because of all sorts of constraints (e.g., budget, timing, …) and field contingencies that disturb 

implementation (e.g., panelists failing to comply with instructions). And of course, the more sophisticated the 

experimentation blueprint, the more unfeasible it is. Moreover, disproportionate sampling may yield more accurate 

estimates: oversampling (under-sampling) strata for which performances are more (less) uncertain is indeed 

desirable, provided an ex post corrective weighting restores proportionality to strata relative importance in the 

universe. For sure, the international postal universe is so intricate that a full scale proportional experimental design 

would come to a dead-end. Therefore, strata-level records need to be weighted. More precisely, sampling imbalances 

must be redressed, when compiling strata-level estimates of probabilities of delivery within a fixed deadline of 𝕥 

periods denoted by Π̂𝑠,𝕥. Indeed, correctly weighted arithmetic means of these Π̂𝑠,𝕥 , - made explicit in the next two 

paragraphs - yield valid aggregate indicators of logistic effectiveness at different echelons. 

3.2.1. IPC scorecard 

At the lowest echelon, IPC can assess the postal logistics for every country-to-country route (𝐶𝑜2𝐶𝑑), by an 

estimate of the probability of delivery within a 𝕥-day deadline of any item sent from within 𝐶𝑜 to an addressee in 

𝐶𝑑, denoted by �̂�(𝑪𝒐𝟐𝑪𝒅, 𝕥). The latter results from the weighted average, over the subset: 𝑠 ∈ 𝑆(𝐶𝑜2𝐶𝑑), of the 

Π̂𝑠,𝕥, using the conditional weights defined by formula (T2.1): 

�̂�(𝑪𝒐𝟐𝑪𝒅, 𝕥) = ∑ [𝜔𝑠|𝐶𝑜2𝐶𝑑 × Π̂𝑠,𝕥]

𝑠∈𝑆(𝐶𝑜2𝐶𝑑)

, ∀(𝐶𝑜, 𝐶𝑑 ≠ 𝐶𝑜) (1) 

At the top of its dashboard, IPC places the supra-aggregate KPI summing up the overall QoS of all the country-

to-country flows. This ultimate KPI can be obtained by extension of (1) to all 𝑜2𝑑-routes, substituting the 𝜔𝑠|𝑜2𝑑
∗∗  

- calculated by (T2.2) - for the 𝜔𝑠|𝑜2𝑑: 

�̂�(𝑬𝒖𝟐𝑬𝒖, 𝕥) =∑( ∑ [𝜔𝑠|𝑜2𝑑
∗∗ × Π̂s,𝕥]

𝑠∈𝑆(𝑜2𝑑)

) 

𝑜2𝑑

= ∑ ∑ [{𝜔𝑠|𝑜2𝑑 × 𝕧𝑜2𝑑} × Π̂s,𝕥].

𝑠∈𝑆(𝑜2𝑑)𝑜2𝑑

(2) 

3.2.2. Outbound versus inbound trackers 

To learn about the quality of operations taking place at each end of the process, one needs to dissociate 

perspectives but under 𝑼𝑵𝑬𝑿𝑻𝑴, but IPC does not disentangle inbound from outbound stretches. Yet, the focus 

can be put on each end, disjointly, by averaging the �̂�(𝐶𝑜2𝐶𝑑, 𝕥) 

 

• either over all destinations (𝑑 ≠ 𝐶𝑜) for each origin (𝐶𝑜), to get a country-to-Europe cursor: 

�̂�(𝑪𝒐𝟐𝑬𝒖, 𝕥) = ∑  ( ∑ [𝜔𝑠|𝐶𝑜2𝑑
∗+ × Π̂s,𝕥]

𝑠∈𝑆(𝐶𝑜2𝑑)

)

𝑑≠𝐶𝑜

, 𝑤𝑖𝑡ℎ: ∑ ∑ 𝜔𝑠|𝐶𝑜2𝑑
∗+

𝑠∈𝑆(𝐶𝑜2𝑑)𝑑≠𝐶𝑜

= 1, 𝑎𝑛𝑑 ∀𝐶𝑜, (3.1) 

• or over all origins (𝑜 ≠ 𝐶𝑑) for each destination (𝐶𝑑), offering a Europe-to-country outlook: 

�̂�(𝑬𝒖𝟐𝑪𝒅, 𝕥) = ∑  ( ∑ [𝜔𝑠|𝑜2𝐶𝑑
+∗ × Π̂s,𝕥]

𝑠∈𝑆(𝑜2𝐶𝑑)

)

𝑜≠𝐶𝑑

, 𝑤𝑖𝑡ℎ: ∑ ∑ 𝜔𝑠|𝑜2𝐶𝑑
+∗

𝑠∈𝑆(𝑜2𝐶𝑑)𝑜≠𝐶𝑑

= 1, 𝑎𝑛𝑑 ∀𝐶𝑑. (3.2) 
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Indeed, formula (3.1)/alternatively, (3.2)/ rates the efficiency of the outbound /alternatively, inbound/ processes 

operated by the postal player in the country of origin /alternatively, destination/. To be fair, special caution is in order 

when referring to such gradings for ranking actors involved because the symbol 𝑬𝒖 stands for different truncated 

sets from which the country under evaluation is excluded (since within-country domestic mail is not surveyed by 

𝑼𝑵𝑬𝑿𝑻𝑴). Calculations of the relevant weights - 𝜔𝑠|𝐶𝑜2𝑑
∗+  and 𝜔𝑠|𝑜2𝐶𝑑

+∗  - are detailed in Table 3. These ensue from 

weighting the 𝜔𝑠|𝑜2𝑑
∗∗  by the ratios of stream-specific volume shares to total shares in outbound- and inbound-

volumes, 𝕍𝐶𝑜2𝐸𝑢 and 𝕍𝐸𝑢2𝐶𝑑 , respectively. 

Table 3. Weightings specific to disjoined KPIs. 

 

3.2.3. Consistency of KPIs 

The superordinate Europe-to-Europe KPI, �̂�(𝑬𝒖𝟐𝑬𝒖, 𝕥), should also be arrived at through weighted averages 

of either the outbound, or the inbound KPIs. Such is the case, if one averages the �̂�(𝒐𝟐𝑬𝒖, 𝕥)-KPIs, over all 𝑜-origins, 

each with a weight equal to its share in the total real mail volume sent from it to the rest of Europe (𝕍𝑜2𝐸𝑢): 

using (3.1) ⟹∑[𝑉𝑜2𝐸𝑢 × �̂�(𝒐𝟐𝑬𝒖, 𝕥)]

𝑜

=∑[∑ ∑ [{𝜔𝑠|𝑜2𝑑 × 𝕧𝑜2𝑑} × Π̂𝑠,𝕥]

𝑠∈𝑆(𝑜2𝑑)𝑑≠𝑜

]

𝑜

= �̂�(𝑬𝒖𝟐𝑬𝒖, 𝕥). 

Similarly, one also gets back to it when one averages the �̂�(𝑬𝒖𝟐𝒅, 𝕥)-KPIs, over all 𝑑-destinations, each with a 

weight equal to its share in the total real mail volume sent to it from the rest of Europe (𝕍𝐸𝑢2𝑑): 

using (3.2) ⟹∑[𝕍𝐸𝑢2𝑑 × �̂�(𝑬𝒖𝟐𝒅, 𝕥)]

𝑑

= ∑[∑ ∑ [{𝜔𝑠|𝑜2𝑑 × 𝕧𝑜2𝑑} × Π̂𝑠,𝕥]

𝑠∈𝑆(𝑜2𝑑)𝑜≠𝑑

]

𝑑

= �̂�(𝑬𝒖𝟐𝑬𝒖, 𝕥). 

Ultimately, substituting (1) into (2), it gets validated as the volume-weighted average of the stream-specific ones: 

�̂�(𝑬𝒖𝟐𝑬𝒖, 𝕥) =  ∑𝕧𝑜2𝑑 × [ ∑ 𝜔𝑠|𝑜2𝑑 × Π̂𝑠,𝕥
𝑠∈𝑆(𝑜2𝑑)

] =  ∑𝕧𝑜2𝑑 × �̂�(𝒐𝟐𝒅, 𝕥)

𝑜2𝑑

.

𝑜2𝑑
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3.3. Shortage of coverage calling for model-based extrapolations 

From 2021 on, the address labelling (𝑓 = 𝐴𝑑) revealed to be a non-discriminant factor12. Hence, for 2023, the 

TNS reduced to: 1,446,336. Yet, the actual number of relevant strata (𝐴𝑁𝑆) - i.e., those for which 𝜔𝑠|𝑜2𝑑
∗∗ > 0 - 

amounted to: 

𝐴𝑁𝑆 =  ∑ ∑ |𝑆(𝐶𝑜2𝐶𝑑)|

𝐶𝑑≠𝐶𝑜𝐶𝑜

= 333,792. 

Although this 𝐴𝑁𝑆 lies much below the 𝑇𝑁𝑆, assessing all these hundreds of thousands of strata, albeit each 

by one single test-item, is just impossible, not only because it would be too costly, but even more importantly, 

because on some rural routes the number of test-items would overflow the real volumes exchanged. In 2023, with 

a sample of size: 𝑛 = 105,889 valid test-items, the number of strata effectively surveyed (𝑆𝑆) hardly exceeded fifty 

thousand: 𝑆𝑆 = 51,869 , accounting for only 15.54  (𝑠𝑠 = 𝑆𝑆/𝐴𝑁𝑆)  of the universe. Letting 𝐶𝑆  denote the 

subset of checked strata, the real universe coverage rate (𝑈𝐶𝑅) is determined by adding up their marginal weights: 

𝑈𝐶𝑅 =∑ ∑ 𝜔𝑠|𝑜2𝑑
∗∗

𝑠∈𝑆(𝑜2𝑑)

 

𝑜2𝑑

= 70.73%. 

While that rate stands much higher than the percentage of surveyed strata, it is grossly insufficient to give any 

hope to draw unbiased estimates of �̂�-punctuality measurements from the 𝑼𝑵𝑬𝑿𝑻𝑴 annual study. This is why 

we could not just rely on the observed sample proportions of items delivered within the 𝕥-day deadline to guess 

the Π̂𝑠,𝕥 , since more than 84% - i.e., 1 − 𝑠𝑠 - of these estimates are missing. Consequently, we have built and 

calibrated econometric models to predict all Π̂𝑠,𝕥 and therefrom, get the aggregate KPIs: 

 �̂�(𝑶𝟐𝑫, 𝕥), for 𝑂2𝐷 ∈ {𝐶𝑜2𝐶𝑑, 𝐶𝑜2𝐸𝑢, 𝐸𝑢2𝐶𝑑}, defined here above by: (1), (2), (3.1) and (3.2). 

Such an econometric inference process “borrows strength” across the whole data set through formalized 

explicit mathematical relationships between measurements and their determinants, links that can be extrapolated 

to the non-covered strata. As to the others, all sparingly monitored13 , such indirect model-based estimates are 

expected to be more reliable than those derived by direct weighting of corresponding sample proportions14. 

3.4. Tackling the uncertainty hanging over the weights 

In § 3.1.2 here above, we confessed that the so-called “standard” weighting basis - despite it is designed in 

compliance with CEN’s instructions - relies on the unrealistic hypothesis of independence between mail features 

because IPC does not have the capability to gather detailed data on the repartition of Co2Cd real mail volumes 

exchanged down to the strata-level, nor do they have the means to collect them. Hence, we must acknowledge that 

the information available on the postal universe is far from complete and realize that such imperfect knowledge 

entails an increase in the inaccuracy of KPIs’ valuation. The imprecision due to sampling gets indeed compounded 

by the lack of dependability of the stratum weights, which may also cause biases. Per country-to-country stream, 

an infinity of sets of non-negative sum-constrained (adding up to 1) real numbers are eligible as weights’ vectors: 

𝓦𝑪𝒐𝟐𝑪𝒅 = [𝓌𝑠|𝐶𝑜2𝐶𝑑 ≥ 0|𝑠 ∈ 𝑆(𝐶𝑜2𝐶𝑑)], with: ∑ 𝓌𝑠|𝐶𝑜2𝐶𝑑𝑠∈𝑆(𝐶𝑜2𝐶𝑑) = 1, 

provided each of their mode-specific 𝑚(𝑓|𝐶) subsets - i.e., for which: 𝐼𝑚(𝑓|𝐶)
𝑠|𝐶𝑜2𝐶𝑑

= 1 - jointly match each of the  

related real mail weights: Ω𝑚(𝑓|𝐶).  

 
12 Over time, the facsimile of human handwriting on test-envelops has become as readable by sorters as the machine-typed 
addresses. 
13 On average, about 2 items were tested per surveyed stratum: 𝑛/𝑆𝑆. 
14 Cf. literature on “small area / small domain estimation”: Rao and Molina (2015), Sugasawa and Kubokawa (2023). 
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Out of all feasible vectors, two extremes are of interest: 

• 𝒲𝐶𝑜2𝐶𝑑  minimizing the value of the point-estimate of the KPI, thus yielding its lower bound: �̂̂�(𝐶𝑜2𝐶𝑑, 𝕥), 

• 𝒲𝐶𝑜2𝐶𝑑 maximizing the value of the point-estimate of the KPI, thus yielding its upper bound: �̂̂�(𝐶𝑜2𝐶𝑑, 𝕥). 

The double hat-accent above the 𝛱-symbol distinguishes here the extremes from the point estimate (single hat) 

derived using the standard weighting basis. This notation is meant to signal that KPI-estimates are subject to two 

sources of errors: sampling and ex-post weighting. Table 4 specifies the mathematical linear programs to be solved 

to obtain these bounds. 

Table 4. Determination of the variability of the point-estimate of the Co2Cd-KPI. 

 

Per construction, they delimit the range of values which the point-estimate of the KPI can take: 

[�̂̂�(𝐶𝑜2𝐶𝑑, 𝕥) = ∑ 𝓌
𝑠|𝐶𝑜2𝐶𝑑

× Π̂𝑠,𝕥
𝑠∈𝑆(𝐶𝑜2𝐶𝑑)

]   ≤   �̂�(𝐶𝑜2𝐶𝑑, 𝕥)   ≤   [�̂̂�(𝐶𝑜2𝐶𝑑, 𝕥) = ∑ 𝓌𝑠|𝐶𝑜2𝐶𝑑 × Π̂𝑠,𝕥
𝑠∈𝑆(𝐶𝑜2𝐶𝑑)

]. 

Since the summative KPIs are mere weighted averages - with known weights: 𝕍𝐶𝑜2𝐸𝑢 , 𝕍𝐸𝑢2𝐶𝑑  and 𝕧𝐶𝑜2𝐶𝑑 – of the 

Co2Cd-KPIs, maximizing/minimizing the latter necessarily leads to maximizing/minimizing the former which result 

from their aggregation. We programmed the search for these extrema, for each of the 710 Co2Cd-streams surveyed 

in 2023, with the help of the OR (Operations Research) package of Statistical Analysis Software (SAS).   
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The computer code listed in annex A.1 solves: 

𝑀𝐴𝑋 𝑀𝐼𝑁⁄ �̂̂�(𝑜2𝑑, 𝕥| 𝓦𝑪𝒐𝟐𝑪𝒅)  ⇒ 𝑀𝐴𝑋 𝑀𝐼𝑁⁄

{
 
 
 

 
 
 �̂̂�(𝐶𝑜2𝐸𝑢, 𝕥| 𝓦𝑪𝒐𝟐𝒅) = ∑ (

𝕧𝐶𝑜2𝑑
𝕍𝐶𝑜2𝐸𝑢

) .

𝑑≠𝐶𝑜

�̂̂�(𝐶𝑜2𝑑, 𝕥| 𝓦𝑪𝒐𝟐𝒅) 

�̂̂�(𝐸𝑢2𝐶𝑑, 𝕥| 𝓦𝒐𝟐𝑪𝒅) = ∑ (
𝕧𝑜2𝐶𝑑
𝕍𝐸𝑢2𝐶𝑑

) .

𝑜≠𝐶𝑑

�̂̂�(𝑜2𝐶𝑑, 𝕥| 𝓦𝑜2𝐶𝑑)

�̂̂�(𝐸𝑢2𝐸𝑢, 𝕥| 𝓦) =∑𝕧𝑜2𝑑 × �̂̂�(𝑜2𝑑, 𝕥| 𝓦𝒐𝟐𝒅).

𝑜2𝑑

 

Indeed, simple linear combinations of extrema of 𝐶𝑜2𝐶𝑑-KPIs yield corresponding extrema of aggregate ones: 

 

�̂̂�(𝑪𝒐𝟐𝑬𝒖, 𝕥) =  ∑ (
𝕧𝑪𝒐𝟐𝒅
𝕍𝑪𝒐𝟐𝑬𝒖

) .
𝑑≠𝐶𝑜

�̂̂�(𝐶𝑜2𝑑, 𝕥)  ↔ �̂̂�(𝑪𝒐𝟐𝑬𝒖, 𝕥) = ∑ (
𝕧𝑪𝒐𝟐𝒅
𝕍𝑪𝒐𝟐𝑬𝒖

) .
𝑑≠𝐶𝑜

�̂̂�(𝐶𝑜2𝑑, 𝕥), 

 

�̂̂�(𝑬𝒖𝟐𝑪𝒅, 𝕥) = ∑ (
𝕧𝒐𝟐𝑪𝒅
𝕍𝑬𝒖𝟐𝑪𝒅

) .
𝑜≠𝐶𝑑

�̂̂�(𝑜2𝐶𝑑, 𝕥)↔ �̂̂�(𝑬𝒖𝟐𝑪𝒅, 𝕥) = ∑ (
𝕧𝒐𝟐𝑪𝒅
𝕍𝑬𝒖𝟐𝑪𝒅

) .
𝑜≠𝐶𝑑

�̂̂�(𝑜2𝐶𝑑, 𝕥), 

�̂̂�(𝑬𝒖𝟐𝑬𝒖, 𝕥) =∑𝕧𝑜2𝑑 × �̂̂�(𝑜2𝑑, 𝕥)  ↔
𝑜2𝑑

 �̂̂�(𝑬𝒖𝟐𝑬𝒖, 𝕥) =∑𝕧𝑜2𝑑 × �̂̂�(𝑜2𝑑, 𝕥)
𝑜2𝑑

. 

4. Mathematical modeling of delivery punctuality 

All KPIs of interest (introduced here above in § 3.2.1 and 3.2.2) rest on estimated stratum-level probabilities 

of delivery within fixed deadlines. To specify these mathematically, one must concentrate on the delivery time, 

operationalized by the number of working days it takes Posts to carry an item - singled out by subscript: 𝑖 - from 

its shipping point to its destination. That duration must be treated as a discrete random variable, taking integer 

values greater or equal to one day. Hence, we label it with the tilde ~ accent: �̃�𝑖. Characterizing its distribution 

and fitting it to observed time records will enable us to calculate the KPI inputs, since the probability that item 𝑖 

be delivered to its addressee within a certain 𝕥-day deadline is the probability its delivery time is at most equal to 

𝕥 days: 

Π𝑖,𝕥 = 𝑃(�̃�𝑖 ≤ 𝕥), for 𝕥 ∈ {1, 2,… }. (4.1) 

 

Expression (4.1) corresponds to the cumulative distribution function (𝑐𝑑𝑓) of �̃�𝑖. Most often the 𝑐𝑑𝑓 of a 

discrete variable is determined from its probability mass function (𝑝𝑚𝑓) by simple addition: 

Π𝑖,𝕥 =∑π𝑖,𝑡

𝑡=𝕥

𝑡=1

, where: π𝑖,𝑡 = 𝑃(�̃�𝑖 = 𝑡). (4.2) 

In the present context where about 85% of the Π𝑠,𝕥 are to be extrapolated (1 − 𝑠𝑠 =  84.46%, cf. 3.3) from 

records of delivery times, �̃�𝑖 is to be delt with as the postal response to the factors formalized in the second column 

of Table 1. To do so, a predictor function, linearly combining the effects of these explanatory variables must be 

specified. In the jargon of certain disciplines such as actuarial sciences, it is also known as the linear score (Denuit 

et al., 2019, pp.100-101). In the sequel, this comprehensive predictor – resulting from all specificities that 

characterize the item and its route, weighted by parameters reflecting their differential effects on the postal logistic 

effectiveness – will be interpreted as the QoS and labelled: 𝑄𝑖.  
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Here, given that all predictors are the nominal classification variables listed in Table 1, this latent construct, 𝑄𝑖, 

is not directly measurable but defined by: 

𝑄𝑖 = 𝚩 +(∑ [ ∑ 𝛿𝑚(𝑓)
𝑓 . 𝑥𝑖,𝑚(𝑓)

𝑓

𝑚(𝑓)∈{𝑴𝒇|𝑚(𝑓)≠𝑏(𝑓)}

]

𝑓∈𝓕

) + ( ∑𝜐ℴ
𝑂 .

ℴ∈𝒪

𝑍𝑖,ℴ
𝑂 + ∑ 𝜐𝒹

𝐷 .

𝒹∈𝒟

𝑍𝑖,𝒹
𝐷 ) . (5) 

where: 

- the superscript 𝑓  identifies the 𝑓𝑡ℎ   predictor, while the second subscript 𝑚  points the mode of 𝑓 

characterizing item 𝑖, and 𝑴𝒇 is the set of alternative modes that 𝑓 may take, 

- the variable 𝑥𝑖,𝑚(𝑓)
𝑓

  is the 1/0  binary dummy indicating whether, or not, 𝑚(𝑓)  is indeed the mode 

characterizing the 𝑖𝑡ℎ item with respect to 𝑓, and its coefficient differentiates the mode effect from an arbitrarily 

chosen benchmark denoted 𝑏(𝑓): 

𝛿𝑚(𝑓)
𝑓

= 𝛽𝑚(𝑓)
𝑓

− 𝛽𝑏(𝑓)
𝑓 (5.1) 

where 𝛽𝑚(𝑓)
𝑓

 is the underlying regression coefficient, and 𝛽𝑏(𝑓)
𝑓

 is the baseline parameter, 

- consequently, 𝚩 stands for the reference effectiveness level, equal to the sum of the baseline parameters, 

unidentifiable separately: 

 𝚩 = ∑𝛽𝑏(𝑓)
𝑓

𝑓∈𝓕

(5.2) 

- the inner sum - within square brackets in the second term - defines, without loss of generality, the effect of 

the 𝑓-predictor on 𝑖’s handling, 

- 𝑍𝑖,ℴ
𝑂  is the 1/0 binary dummy indicating whether, or not, the 𝑖𝑡ℎ item was sent from the ℴ𝑡ℎ postal area, 

while 𝜐ℴ
𝑂 is the random component reflecting local idiosyncrasies of outbound logistics within that zone, 

- 𝑍𝑖,𝒹
𝐷  is the 1/0 binary dummy indicating whether, or not, the 𝑖𝑡ℎ  item was sent to the 𝒹𝑡ℎ  postal area, 

while 𝜐𝒹
𝐷 is the random component reflecting local idiosyncrasies of inbound logistics within that zone. 

The random components, 𝜐ℴ
𝑂 and 𝜐𝒹

𝐷 , are meant to encompass spatial heterogeneity in logistics across on the 

one hand, origin areas and on the other, destination vicinities. They are assumed to be zero-mean mutually 

independent, normally distributed, random variables, with respective standard deviations: 

𝑆𝑡𝑑𝑣[𝜐ℴ
𝑂] = 𝜍0, (5.3) 

and 

𝑆𝑡𝑑𝑣[𝜐𝑑
𝐷] = 𝜍𝐷 . (5.4) 

In accordance with the KISS-principle - as reinterpreted by Arnold Zellner (2002) to mean: keeping it (i.e., the 

model) sophisticatedly simple -, we defined these zones by the country-urbanization pairings: 

ℴ ∈ {𝑴𝑪𝒐 ∩𝑴𝑼𝒐} ⇒  𝑥𝑖,𝑚(𝐶𝑜)
𝐶𝑜  . 𝑥𝑖,𝑚(𝑈𝑜)

𝑈𝑜 ⇒ 𝑍𝑖,ℴ
𝑂 , (5.5) 

and 

𝒹 ∈ {𝑴𝑪𝓭 ∩𝑴𝑼𝓭} ⇒  𝑥𝑖,𝑚(𝐶𝑑)
𝐶𝑑  . 𝑥𝑖,𝑚(𝑈𝑑)

𝑈𝑑  ⇒  𝑍𝑖,𝒹
𝐷 . (5.6) 

The resulting random intercepts suffice to capture the essentials of the spatial heterogeneity at both the 

outbound- and inbound-ends. They are introduced in the model to reflect uncontrollable events occurring during 

the first- and last-miles of the postal journey, close to the interfaces of Posts with their customers: between senders 

and the outbound logistics on one side, and between inbound logistics and the final addressee on the other side15. 

 
15“Territory design for last-mile delivery faces the challenge that regions have to be determined without deterministic knowledge on the 
varying sets of customers that have to be serviced each day” (Boysen et al., 2021, p. 10). Comparable uncertainties in demand dispersion 
must be coped with for the first mile. 
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The number of these intercepts remains manageable16. Modeling finer mappings of the postal logistics space, up to 

considering panelists as clusters, would cause serious problems at the parametrization stage: slow convergence 

(prohibitively long running time) of estimation heuristics, infeasibility or divergence, computer memory shortage 

(Kiernan et al., 2012). 

Predicting values of either the π𝑖,𝑡, or the Π𝑖,𝕥, from 𝑄𝑖, further demands to shape and calibrate a consistent, 

hence non-linear, econometric link between the predictor function and the pmf (probability mass function), or the 

cpf (cumulative probability function) of �̃�𝑖. The next two subsections explain how such links can be established: the 

first applies count regression, while the second relates to ordinal regression. 

4.1. Specification via the probability mass function  

Starting from the pmf of �̃�𝑖 amounts to regarding delivery time as a discrete nonnegative integer. The most 

popular approach to the analysis of such noncontinuous variates is known as count regression designed to predict 

responses resulting from the count of the number of occurrences (ℕ̃) of a specific event, happening randomly and 

independently at a constant rate, within a limited time frame, and/or in a restricted spatial area and/or under 

peculiar circumstances. The pmf on which count regression was built is the Poisson law, limit of the binomial 

distribution, 

𝑃(ℕ̃𝑖 = 𝕟) = [𝜇𝑖
𝕟. 𝑒−𝜇𝑖] 𝕟!⁄ , for 𝕟 = 0, 1, 2,… (6) 

where 𝜇𝑖 > 0, which depends on the context 𝑖, is both the conditional expectation and variance of ℕ̃𝑖. 

4.1.1. Negative binomial probability mass function 

In (6), 𝜇𝑖  shapes the central tendency, as well as the dispersion of the ℕ̃𝑖-pmf, which thus lacks plasticity. 

Moreover, 𝜇𝑖   is assumed to be completely determined by its presupposed predictors. Yet, introducing a 

nonnegative random component reflecting the pervasive uncertainty (�̃�𝑖)  can only add flexibility and realism. 

Therefore, the Poisson model was generalized to account for possible heterogeneity in the stochastic process 

generating ℕ̃𝑖 by substituting for 𝜇𝑖  into (6): 𝜇𝑖 = 𝜇𝑖 . �̃�𝑖, to yield: 

𝑃(ℕ̃𝑖 = 𝕟|�̃�𝑖 = 𝑢) = [(𝜇𝑖 . 𝑢)
𝕟. 𝑒−(𝜇𝑖.𝑢)] 𝕟!⁄ (7.1) 

Assuming further that the random multiplier �̃�𝑖  is a gamma distributed noise, whose probability density 

function is: 

𝑔(�̃�𝑖 = 𝑢) = (
𝛾𝛾

𝛤(𝛾)
) . [𝑢(𝛾−1). 𝑒−𝛾.𝑢], for: 𝑢 ∈ [0,∞[, and where 𝛤(. ) is the generalized factorial, (7.2) 

ensures that 𝐸[𝜇𝑖] = 𝜇𝑖 , because: 𝐸[�̃�𝑖] = 1. So, �̃�𝑖 either amplifies (if 𝑢 > 1) or dampens (if 𝑢 < 1) the effects 

of the fixed predictors encapsulated by 𝜇𝑖 , according to its variance which is the inverse of the single parameter 

characterizing its distribution: 𝑉[�̃�𝑖] = γ
−1. Function (7.2) was chosen because it is the natural conjugate prior of 

(7.1), because the very fact that their kernels take the same form eases their mixing (Hilbe, 2011, §8.2.1: 188-193): 

𝑃(ℕ̃𝑖 = 𝕟) = ∫ 𝑃(ℕ̃𝑖 = 𝕟|�̃�𝑖 = 𝑢). 𝑔(�̃�𝑖 = 𝑢). 𝑑𝑢 =  (
𝛾𝛾

𝛤(𝛾)
.
𝜇𝑖
𝕟

𝕟!
) . ∫ 𝑢(𝕟+𝛾−1). 𝑒−(𝜇𝑖+𝛾).𝑢 .

𝑢=∞

𝑢=0

𝑑𝑢,

𝑢=∞

𝑢=0

  

or 𝑃(ℕ̃𝑖 = 𝕟) =  (
𝛾𝛾

𝛤(𝛾)
.
𝜇𝑖
𝕟

𝕟!
) . (

𝛤(𝕟 + 𝛾)

(𝜇𝑖 + 𝛾)
(𝕟+𝛾)

). 

 
16 In total, 184 = 2 × (3 × 31 − 1), for in 𝐶𝑦𝑝𝑟𝑢𝑠 (𝐶𝑌),𝑚(𝑈𝑜) ≠ 𝐶𝑎 and 𝑚(𝑈𝑑) ≠ 𝐶𝑎, Nicosia being classified as a key city. 
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Ultimately, letting 𝜙 = 𝛾−1  leads to the negative binomial (𝑁𝐵) distribution (ibidem, equation (8.6), p. 

189): 

𝑃(ℕ̃𝑖 = 𝕟) =  
𝛤(𝕟 + (1 𝜙⁄ ))

𝛤(1 𝜙⁄ ). 𝛤(𝕟 + 1)
 . 𝓅𝑖

(1 𝜙⁄ ). (1 − 𝓅𝑖)
𝕟, with: 𝓅𝑖 =

1

1 + (𝜙. 𝜇𝑖)
, for 𝕟 = 0, 1, 2,… (8) 

such that: 

𝑉[ℕ̃𝑖] = 𝜇𝑖 + (𝜙. 𝜇𝑖
2), (9) 

which explains why 𝜙 has been called the overdispersion parameter and shows that the Poisson pmf is the equi-

dispersion limit of the 𝑵𝑩-pmf since: 

lim
𝜙→0

𝑉[ℕ̃𝑖] = 𝜇𝑖 . 

Then, it comes as no surprise that such a versatile model was fitted to such various count statistics as the 

number of units of a branded product item bought on a shopping trip (Ehrenberg, 1959), vehicle accidents on 

segments of Florida state road 50 over three years (Abdel-Aty and Radwan, 2000), disease biomarkers of patients 

(Yirga et al, 2020), bat calls collected using acoustic detectors for 2–5 nights across 20 sites (Stoklosa et al., 2022), … 

Other cases in very diverse universes have been reviewed by Winkelmann (2008, Chapter 9: 251-298). The NB pmf 

was also employed to analyse measurements of process duration, for example to depict the lags in the upshots of 

investments (Solow, 1960; Bultez and Naert, 1979) by the parsimonious generalization of the geometric 

distribution through the Pascal pmf (special case of the NB, when 𝛾 is an integer), study the effects on workers’ 

absenteeism (measured by the number of non-condonable workdays of absence over a year) of remuneration 

contracts and other covariates such as gender, sick-pay grade, age, … (Barmby et al., 2001), explain the length-of-

stay in hospitals of a specific diagnostic group, an example extensively dealt with by Hilbe, throughout his book 

(2011, introduced on page 100), weigh the settings (hospital, personal, and visit characteristics) that may impinge 

on waiting time wasted in hospitals’ emergency departments (Cai and Shimizu, 2014), assess the risk factors likely 

to determine the extent of medical leaves (work disability in days) of victims of motor accidents (Bermúdez et al., 

2018). 

4.1.2. Right-shifted NB-pmf for nonzero delivery times  

From this point on, we consider exclusively delivery processes whose duration cannot be less than one day, 

which is the case for most international transports. So, to fit the 𝑵𝑩 to 𝑼𝑵𝑬𝑿𝑻𝑴 records, we must apply a one-

day right-shift to the measured delivery times. It suffices in formula (8) to substitute (�̃�𝑖 − 1) for ℕ̃𝑖, and thus 

(𝕥 − 1) for 𝕟, which yields:  

𝜋𝑖,𝕥 = 𝑃(�̃�𝑖 = 𝕥) =
𝛤(𝕥 − 1 + 𝜙−1)

𝛤(𝜙−1). 𝛤(𝕥)
 . 𝓅𝑖

(1 𝛼⁄ )
. (1 − 𝓅𝑖)

𝕥−1, with: 𝓅𝑖 =
1

1 + (𝜙. 𝜇𝑖)
, and 𝜇𝑖 , 𝜙 > 0, for 𝕥 = 1, 2,… (10.1) 

The expected value and variance of the delivery time are thus: 

𝐸(�̃�𝑖) = 𝐸(ℕ̃𝑖 + 1) = 𝜇𝑖 + 1 (10.2) 

and 

𝑉(�̃�𝑖) = 𝑉(ℕ̃𝑖 + 1) = 𝜇𝑖 + (𝜙. 𝜇𝑖
2). (10.3) 

Formula (10.3) shows how the overdispersion parameter 𝜙  inflates the variance. Chapter 7 of Hilbe’s book 

(2011, pp. 141-184) is entirely devoted to real and apparent overdispersion; there, he states upfront that “few 

reallife Poisson data sets are truly equidispersed. Overdispersion to some degree is inherent to the vast majority of 

Poisson data” (op. cit., p.141). And he lists the main causes of real overdispersion often effective in practice: “positive 

correlation between responses or … an excess variation between response probabilities or counts” or “when the data 

are clustered” (ibidem).  
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Figure 2 - where π𝑖,𝕥 is plotted on the vertical axis as a function of 𝕥 in abscissa - illustrates how 𝜇𝑖  and 𝜙 

govern the shape, location, and extent of the 𝑁𝐵-pmf curve. 

 

 

Figure 2. Sensitivity of the NB pmf to its parameters. 
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4.1.3. Negative binomial regression 

Linear predictor functions, such as the one made explicit by (5), are linked to the pmf of the count random 

variable, here defined by (10.1), through its location parameter: i.e., 𝜇𝑖 . Given that 

• on the one hand, (5) yields negative values for items difficult to handle, hence with low chances of being 

delivered with the fixed deadline (small π𝑖,𝕥), 

• on the other, 𝜇𝑖  can only be positive since 𝕥 ≥ 1, 

it is only natural to assume an exponential relationship between the measurement of what we labelled the QoS - i.e., 

𝑄𝑖 - and the location of the delivery time pmf: 

𝜇𝑖 = 𝑒
−𝑄𝑖 > 0. (11) 

The exponential form ensures that 𝜇𝑖  remains positive whatever value 𝑄𝑖  may take. The negative sign 

appearing in the exponent reflects that the delivery time decreases as the effectiveness of the delivery logistics 

increases. Also, (11) implies that introducing the heterogeneity component �̃�𝑖  is analogous to adding a zero-

mean error term: 

    𝜇𝑖 = 𝑒
−�̃�𝑖 , where: �̃�𝑖 = 𝑄𝑖 + 𝜀�̃� , 𝜀�̃� = − 𝑙𝑛 �̃�𝑖 , such that 𝐸[𝜀�̃�] ≈ − 𝑙𝑛 𝐸[�̃�𝑖] = 0 (first order approximation).    (12)  

4.2. Specification via the cumulative distribution function 

Chances to meet a 𝕥-day target can be determined directly via (4.1). To make their evaluation explicit, let us 

focus on the QoS which should be high enough to keep delivery time within the deadline, which implies that the QoS 

should exceed a certain minimal level, say: Θ𝕥. Consequently, (4.1) can be developed through the specification of 

the distribution of the QoS: 

Π𝑖,𝕥 = 𝑃(�̃�𝑖 ≤ 𝕥) = 𝑃(�̃�𝑖 ≥ Θ𝕥), (13.1) 

where the tilde accent put on 𝑄𝑖 indicates that from now on we treat it as a random variable: 𝑄𝑖 ⟹ �̃�𝑖 . Indeed, 

besides the fixed constituents of the linear predictor function, other numerous, unmanageable elements, each of 

minor influence, may alter postal efficiency. Hence, their total impact can be modelled through a disturbance term, 

𝜀�̃� , that add noise to the deterministic model (5), thereby acknowledging that predictions of 𝑄𝑖 are uncertain, as 

in (12): 

�̃�𝑖 = 𝑄𝑖 + 𝜀�̃� (13.2) 

On average, the effects of the uncontrollable components, which 𝜀�̃�   embodies, are assumed to compensate one 

another so that the probability distribution of 𝜀�̃� is symmetric around, and peaking at, zero. So, its expected value 

(mode and median, as well) is exactly zero. This postulate entails no loss of generality because a non-zero mean 

would be picked up by the model intercept (i. e. , 𝚩). 

Of course, the shorter the 𝕥-day deadline is, the higher the value of the corresponding Θ𝕥-threshold should be. 

Practically, measurements of probabilities of delivery by 𝕥 = 1  up to 𝕥 = �̅� , day-by-day, require �̅�  parameters, 

since in that case, (13.1)  applies for 𝕥 ∈ {1,2,3, … , �̅�} , with:  Θ1 > Θ2 > Θ3 > ⋯ > Θ�̅�.  Thus, such ranking of 

delivery performances, requires �̅� + 1  classes, or ordered levels: {1, 2,… , �̅�, 𝕃},  where 𝕃  stands for the last 

category formed by all late arrivals, i.e., exceeding the �̅� -day upper limit. Thus, with �̿�  denoting the longest 

observable delivery time, 𝕃 = {(�̅� + 1) ∪ (�̅� + 2) ∪ (�̅� + 3)…∪ …∪ �̿�}. Figure 3 illustrates all possible events: 

 

 

Figure 3. Ordered categories of performances along the quality-of-service continuum. 
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Substituting  (13.2)  into (13.1),  one obtains: 𝑃(�̃�𝑖 ≤ 𝕥) = 𝑃((𝑄𝑖 + 𝜀�̃�) > Θ𝕥) = 𝑃(𝜀�̃� > (Θ𝕥 −𝑄𝑖)) . This 

probability can be inferred from the distribution of the standardized disturbance term 𝜀�̃�
∗, by dividing it by its 

dispersion (𝜎): 

𝑃(�̃�𝑖 ≤ 𝕥) =  𝑃 (
𝜀�̃�
𝜎
>
(Θ𝕥 − 𝑄𝑖)

𝜎
) = 𝑃(𝜀�̃�

∗ > (𝜃𝕥 − 𝑞𝑖)) = 1 − ℱ(𝜃𝕥 − 𝑞𝑖), (14) 

where: 𝜀�̃�
∗ = 𝜀�̃�/𝜎, 𝜃𝕥 = Θ𝕥/𝜎, 𝑞𝑖 = 𝑄𝑖/𝜎 and 𝐹(. ) denotes the cumulative density function of 𝜀�̃�

∗. Because of the 

assumed symmetry around zero of the distribution of 𝜀�̃�
∗, 1 − 𝐹(𝓋) =  𝐹(−𝓋). Therefore, (14) reduces to: 

Π𝑖,𝕥 = 𝑃(�̃�𝑖 ≤ 𝕥) = 𝑃(�̃�𝑖 > Θ𝕥) = 𝐹(𝑞𝑖|𝕥), (15.1) 

with: 

 𝑞𝑖|𝕥 = 𝑞𝑖 − 𝜃𝕥, (15.2) 

where according to (5), 

𝑞𝑖|𝕥 = −𝜃𝕥|𝐵 + (∑[ ∑ 𝛿𝑚(𝑓)/𝜎
𝑓 . 𝑥𝑖,𝑚(𝑓)

𝑓

𝑚(𝑓)∈{𝑴𝒇|𝑚(𝑓)≠𝑏(𝑓)}

]

𝑓∈𝓕

)+ ( ∑𝜐ℴ/𝜎
𝑂 .

ℴ∈𝒪

𝑍𝑖,ℴ
𝑂 + ∑ 𝜐𝑑/𝜎

𝐷 .

𝒹∈𝒟

𝑍𝑖,𝒹
𝐷 ) (15.3) 

with: 

𝜃𝕥|𝐵 = 𝜃𝕥 − (𝚩 𝜎⁄ ) (15.4) 

𝛿𝑚(𝑓)/𝜎
𝑓 = 𝛿𝑚(𝑓)

𝑓 𝜎⁄ (15.5) 

𝜐ℴ/𝜎
𝑂 = 𝜐ℴ

𝑂 𝜎⁄ ⟹ 𝑆𝑡𝑑𝑣[𝜐ℴ/𝜎
𝑂 ] =  𝜍𝑂 𝜎⁄ (15.6) 

and 

𝜐𝑑/𝜎
𝐷 = 𝜐𝑑

𝐷 𝜎⁄ ⟹ 𝑆𝑡𝑑𝑣 [𝜐𝑑
𝜎

𝐷] = 𝜍𝐷 𝜎.⁄ (15.7) 

Due to the standardization introduced in (14), all parameters - including the standard deviations of the random 

components - are deflated (i.e., are scaled in 𝜎-units): thus, their estimates are downsized by the weight (𝜎) of the 

unobserved (unexplained) part of the latent variable. Moreover, σ, itself, may vary as potential explanatory factors 

get added (𝜎 ↘)  or deleted (𝜎 ↗) . Therefore, estimates from different specifications derived from the same 

sample, and a fortiori from different samples, are not directly comparable (Mood, 2010). 

4.2.1. Multinomial probability distribution of delivery times 

From the second equality in (13.1) a new pmf of delivery times can be derived: 

𝜋𝑖,𝕥 = 𝑃(�̃�𝑖 = 𝕥) = 𝑃(Θ𝕥 < �̃�𝑖 ≤ Θ𝕥−1) = 𝑃(�̃�𝑖 ≤ Θ𝕥−1) − 𝑃(�̃�𝑖 ≤ Θ𝕥) 

or, according to (15.1): 

πi,𝕥 = [1 − 𝐹(qi|𝕥−1)] − [1 − 𝐹(qi|𝕥)] = 𝐹(qi|𝕥) − 𝐹(qi|𝕥−1) =  𝑃(�̃�𝑖 > Θ𝕥) − 𝑃(�̃�𝑖 > Θ𝕥−1), (16.1) 

with for extreme values: 

𝜋𝑖,𝕃 = 𝑃(�̃�𝑖 ≥ �̅�) = 𝑃(�̃�𝑖 ≤ Θ�̅�) =  1 − 𝐹(𝑞𝑖|�̅�) (16.2) 

and 

𝜋𝑖,1 = 𝑃(�̃�𝑖 = 1) = 𝑃(�̃�𝑖 > Θ1) = 𝐹(𝑞𝑖|1). (16.3) 

Equations (16.2) and (16.3) are consistent with (16.1) of which they are indeed special cases: 

𝜋𝑖,𝕃 = 𝑃(Θ𝕃 = −∞ < �̃�𝑖 ≤ Θ�̅�) = 𝑃(�̃�𝑖 ≤ Θ�̅�) − 𝑃(�̃�𝑖 ≤ −∞) = 𝑃(�̃�𝑖 ≤ Θ�̅�), since: 𝑃(�̃�𝑖 ≤ −∞) = 0 

𝜋𝑖,1 = 𝑃(Θ1 < �̃�𝑖 ≤ Θ0 = +∞) = 𝑃(�̃�𝑖 ≤ +∞) − 𝑃(�̃�𝑖 ≤ Θ1) = 𝑃(�̃�𝑖 > Θ1), since: 𝑃(�̃�𝑖 ≤ +∞) = 1. 
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4.2.2. Logistically distributed disturbances 

The most popular specification of 𝐹 is the logistic function, Λ, which transposed in the present context, leads 

to: 

𝐹(𝑞𝑖|𝕥) = Λ(𝑞𝑖|𝕥) = 1 [1 + 𝑒−𝑞𝑖|𝕥]⁄ . 

Hence, (15.1) takes the explicit form: 

Π𝑖,𝕥 = 𝑃(�̃�𝑖 ≤ 𝕥) = 𝑃(�̃�𝑖 > Θ𝕥) = 1 [1 + 𝑒−𝑞𝑖|𝕥]⁄ . (17) 

Figure 4 exemplifies how the multinomial cumulative logit (MCL) model so defined works. More precisely, it 

shows the implementation of formula (16.1) when (17) holds true. As it should be, chances of meeting deadlines 

increase with the QoS: growth curves of Π𝑖,𝕥  and Π𝑖,𝕥−1  are 𝑆-shaped because of the choice of the logistic cdf 

specified by (17) . Moreover, Π𝑖,𝕥 > Π𝑖,𝕥−1  because 𝛩𝕥−1 > Θ𝕥 , since the shorter the deadline, the tougher the 

challenge, the higher the QoS should be. Naturally, the probability that the mail item be received exactly 𝕥 days 

after its sending date, π𝑖,𝕥, which results from the difference between the ordinates of the two 𝑆-shaped curves, 

evolves non-monotonically: first it rises, up to a maximum value, beyond which it declines. This non-monotonicity 

is due to the fact that beyond a certain QoS-level, delivery times shorter than the one considered become 

significantly more likely: π𝑖,𝕥−1 ↗ ⟹ π𝑖,𝕥 ↘. 

 

Figure 4. Deduction of probability of delivery time from the logistic modeling of the chances of meeting deadlines, 

as functions of the QoS standardized measure (𝑞𝑖  plotted along the horizontal axis). 
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4.2.3. Proportional odds property 

Equation (17)  can be linearized by the logit transform, i.e., the natural logarithm of the odds in favor of 

reaching the goal. The odds in favor of the achievement (�̃�𝑖 ≤ 𝕥) result from the ratio of the chances of being 

delivered within the deadline: 

𝑃(�̃�𝑖 ≤ 𝕥) = 1 (1 + 𝑒−𝑞𝑖|𝕥)⁄ (18.1) 

to the risk of being delivered later: 

𝑃(�̃�𝑖 > 𝕥) = 𝑅𝑖(𝕥) = 𝑒
−𝑞𝑖|𝕥 (1 + 𝑒−𝑞𝑖|𝕥)⁄ =  1 (𝑒𝑞𝑖|𝕥 + 1) =  Λ(−𝑞𝑖|𝕥)⁄ . (18.2) 

This ratio simplifies to: 

𝕆(�̃�𝑖 ≤ 𝕥) = 𝑒
𝑞𝑖|𝕥 , (18.3) 

and using (15.2), its logarithm yields: 

𝑙𝑛 (𝕆(�̃�𝑖 ≤ 𝕥)) = 𝑙𝑛(𝑒
𝑞𝑖|𝕥) = 𝑞𝑖|𝕥 =𝑞𝑖 − 𝜃𝕥. (19) 

Hence, the odds ratio for two items, 𝒾 ≠ ℓ , entailing different handling efficiency levels, 𝑄𝒾 ≠ 𝑄ℓ , is 

independent of the target 𝕥 considered, a property called: “proportional odds” (McCullagh, 1980, p. 110), since: 

𝑂𝑅𝒾,ℓ =
𝕆(�̃�𝒾 ≤ 𝕥)

𝕆(�̃�ℓ ≤ 𝕥)
=
𝑃(�̃�𝒾 ≤ 𝕥) 𝑃(�̃�𝒾 > 𝕥)⁄

𝑃(�̃�ℓ ≤ 𝕥) 𝑃(�̃�ℓ > 𝕥)⁄
= 𝑒𝑞𝒾|𝕥 𝑒𝑞ℓ|𝕥⁄ = 𝑒(𝑞𝒾−𝜃𝕥) 𝑒(𝑞ℓ−𝜃𝕥)⁄ = 𝑒𝑞𝒾 𝑒𝑞ℓ⁄ = 𝑒(𝑞𝒾−𝑞ℓ), ∀𝕥. (20) 

In (20), the 𝜃𝕥  “cut point” parameter (McCullagh, ibidem) cancels out and so the conditional subscript 𝕥 

disappears. This property results from the assumption that the parameters weighting the items ′ attributes in 

determining the quality-of-service are independent of the target 𝕥 . Agresti (2019, p. 177) defends this 

proportional-odds variant of the cumulative logit model with the logical consistency argument: “When the model 

does not fit well, one could consider the more general cumulative model that has separate effects for different 

cumulative probabilities…”: i.e., 

the 𝛿𝑚(𝑓)
𝑓  get differentiated into 𝛿𝑚(𝑓)|𝕥

𝑓 . 

So, the “curves for different cumulative probabilities climb or fall at different rates, but then those curves cross at 

certain predictor values. This is inappropriate because this violates the order that cumulative probabilities must have.” 

Moreover, this differentiation considerably increases the number of parameters: in the present case, it would 

multiply it by 𝕥. As Agresti (op. cit., p. 178) underlines it: “Even though the model itself [i.e., its most complete 

differentiated generalization] may have less bias, estimates of measures of interest such as odds ratios or category 

probabilities may be poorer because of the lack of model parsimony. We do not recommend this approach unless the 

lack of fit of the ordinal model is severe in a practical sense.” 

4.2.4. Pervasiveness of logistic regression: predominance of its binomial variant, over its multinomial one 

Logistic regression tools have been developed and implemented 

• to explain three types of categorical responses: binary (𝕃 = 2 ), multinomial nominal (choices) and 

multinomial ordinal (the 𝑴𝑪𝑳),  

• at various degrees of technicality: simple/generalized, one-level/hierarchical, without/with random effects, 

frequentist/Bayesian,  
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• in almost all fields: 

o genetics (Wang et al., 2016), epidemiology (Armstrong and Sloan, 1988; Khan et al., 2015), 

o medicine: diagnoses (McCullagh, 1980; Agresti, 2007, pp. 182-184), clinical trials (Zhang et al., 2021), 

healthcare treatments (Anderson and Philips, 1981, pp. 27-30; Papadopoulos et al., 2021); vaccination 

uptake (Ross et al., 2022), 

o biology (Shaban and Alkawareek, 2022), zoology (Abts et al., 2018), agriculture-forestry (Uusitalo et 

al., 2018), 

o education (Peng et al., 2002), sociology (Diekmann et al., 2022), opinion surveys (Dalla Valle et al., 

2020), political science (Agresti, 20O2, pp. 502-504; Carrubba et al., 2012; Wolter et al., 2003), public 

policy (Kim et al., 2013, pp. 171-172, 177, 179), … 

Their usefulness has also been demonstrated in management areas: numerous examples can be found in 

production (White et al.,1999, pp. 9 et seq.), logistics (Castillo et al., 2018), transportation (Farid and Ksaibati, 2021; 

Pritchard et al., 2021), finance (risk of bankruptcy: Calabrese et al., 2016; chances of mergers and acquisitions: Alam 

and Lee, 2014), and even anticipations of stock price movement directions (Yang et al., 2022)), in marketing 

(Guadagni and Little, 1983; de Haan et al, 2015; Bultez et al, 2025) … Up to a point where some have argued in favor 

of its inclusion within undergraduate Business Administration curricula: Brusco (2022), and Hoang and Watson 

(2022). 

On the contrary, implementations of the 𝑴𝑪𝑳 model have been rare because binary responses are much more 

frequently studied than multilevel ordinal ones and when these are analyzed authors pool categories up to 

dichotomizing them. Such mergers of categories, which entail information loss, are acknowledged, and justified 

more or less explicitly by sample imbalances: 

• Dalla Valle et al. (2020, p. 433) collapsed into two degrees the four grades of the Europeans’ attitude  

towards immigrants from poorer countries (“Allow many/some/a few/none)17 : “The dependent variable is 

‘immig’, indicating whether the respondent would allow immigrants from poorer countries outside Europe, with 

‘immig = 1’ if the respondent is against immigration, and’ immig = 0’ if the respondent is in favour of immigration. 

The dependent variable was obtained by dichotomizing the ‘ESS’ variable ‘impcntr’.” 

• “The response modeled was whether the crash was a severe crash involving a fatality or incapacitating injury.  

The counts of fatal crashes and of incapacitating injury crashes were low. Therefore, they had to be combined.”  

(Farid and Ksaibati, 2021, p. 228).  

• “The target variable is a simple binary variable of commute satisfaction, where 1 is individuals who are  

satisfied with their commute, and 0 those who are not. This variable was created from a single 5-point Likert scale 

question. Respondents who reported being satisfied or very satisfied were assigned as ‘satisfied’. While the 

possibility of treating the variable as ordinal was explored, the response profiles in the different case study regions 

necessitated the transformation of the variable … As a result, even with good model fit indices, the model was 

unlikely to correctly predict the individuals in particularly small groups. (Pritchard et al., 2021, pp. 1000-1001, 

1009: Table 5). 

• Ross et al (op. cit., p. 5) reduced the seven-point scaling of the vaccination likelihood they studied to two  

classes: “All participants that indicated they were likely to receive a vaccine (extremely likely, moderately likely) 

were grouped together, and those who reported being unlikely (slightly likely, neither likely nor unlikely, slightly 

unlikely, moderately unlikely, extremely unlikely) to receive a vaccine were grouped together in a second group.” 

 

 

 

 
17 Figure 3, p. 7: www.europeansocialsurvey.org/sites/default/files/2023-06/TL7-Immigration-English.pdf. 

https://pubsonline-informs-org.proxy.bib.uclouvain.be:2443/action/doSearch?text1=Guadagni%2C+Peter+M&field1=Contrib
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Yet a while ago, Alan Agresti, the renowned statistician most prolific on the analysis of ordinal categorical data, had 

already warned against such practice in the following terms: “Some researchers collapse ordinal responses to binary 

so they can use ordinary logistic regression. However, a loss of efficiency occurs in collapsing ordinal scales, in the sense 

that larger standard errors result. In practice, when observations are spread fairly evenly among the categories, the 

efficiency loss is minor when you collapse a large number of categories to about four categories. However, it can be 

severe when you collapse to a binary response. It is usually inadvisable to do this.” (2007, p.185). Bultez et al. (2025) 

point out that such simplifying grouping of response categories persists in marketing research. In the section 

entitled: Tacking stock of the calibration of ordinal categorical variables, of their article, they sifted contributions 

archetypic of tests of relationships between consumers' satisfaction motives (product attributes, purchase 

experience), and their attitudes (preferences) and behavioral intentions (willingness to recommend, or to remain 

loyal) toward brands (cf. their Table 1). From this review, they conclude that: “the complexity of cumulative 

multinomial regression has hampered its adoption.” (op. cit., § Assumed cardinality). For that reason, Alain Bultez 

programmed the tutorial: CATORDREG.xlxs, designed to help those who want to better understand the 

econometrics behind the MCL model when predictors are also of an ordinal-categorical nature. This training tool is 

available online through ResearchGate. 

5. Empirical fitting of the MCL model to delivery time measurements 

Hereafter, we essentially focus on the calibration of the 𝑴𝑪𝑳 model that best fit the 2023 UNEXTM -CEN data. 

Indeed, as evidenced by § 4.2.4., few publications document applications of the 𝑴𝑪𝑳  regression: out of the 

numerous cases we reviewed, McCullagh (1980), Anderson and Philips (1981), Agresti (2007, pp. 182-184) stand 

out as notable exceptions … Not astonishing since these scholars pioneered and advocated the method. A few more 

can be found in epidemiology and medicine: e.g., Armstrong and Sloan (1988), Harrell et al. (1998), and in marketing: 

Bultez et al. (op. cit.). Anyway, the publication closest to our purpose we could find (not referred to here above 

because neither count, nor logistic regression was made used of by its authors) aimed at assessing 20 US 

commercial airports’ operational efficiency through linear ordinary least-square regression analysis of flights’ on-

time arrival rates at these airports over a nine-year 2009-2017 period (Dinler and Rankin, 2020, Table 4, p.8). Hence, 

we must be among the first to test the MCL model on managerially relevant data and to show empirically how well 

it stands up against the NB model. In what follows, we argue why the MCL is as worth considering as count models 

for studying completion times and delays.  

5.1. Estimation criterion  

Let 𝕊 be the large sample of delivery times (𝕊) measured in 2023, through the UNEXTM experimentation 

system: 𝕊 = {𝑡1 , 𝑡2 … , 𝑡𝑖 , … , 𝑡𝑛},with: 𝑛 = |𝕊| = 105,889. Such a data set can be readily processed through count 

regression, but to also apply the multinomial cumulative logistic regression, each record was encoded into a vector 

of 𝕃 = (�̅� + 1) binary dummies, when 𝕃 stands for the category pooling late deliveries (i.e., all 𝑡𝑖 > �̅�):  

𝑡𝑖 ⟹ [ 𝑦𝑖,1, 𝑦𝑖,2, … , 𝑦𝑖,𝕥, … , 𝑦𝑖,�̅�, 𝑦𝑖,𝕃], where: 𝑦𝑖,𝕥 = {
1, 𝑖𝑓 𝑡𝑖 = 𝕥
0, 𝑖𝑓 𝑡𝑖 ≠ 𝕥

 , 𝑦𝑖,𝕃 = {
1, 𝑖𝑓 𝑡𝑖 ≥ 𝕃
0, 𝑖𝑓 𝑡𝑖 < 𝕃

and such that: ∑𝑦𝕥 = 1

𝕥=𝕃

𝕥=1

. 

The probabilistic nature of the models developed to infer indicators of delivery punctuality in section 4 (here 

above) justifies using the maximum likelihood method to parameterize them. Assuming observations are 

independent, conditional on the random effects (𝜐𝑂 , 𝜐𝐷), the conditional likelihood ℒ(𝕊|𝜐𝑂 , 𝜐𝐷) of sample 𝕊 is 

the product of the probabilities of the observed delivery times: 𝜋𝑖,𝕥, determined for fixed values of 𝜐ℴ
𝑂  and 𝜐𝒹

𝐷 .  
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Then, for the 𝑴𝑪𝑳 model: 𝜋𝑡𝑖 ≡ 𝜋𝑖,1
𝑦𝑖,1  . 𝜋

𝑖,2

𝑦𝑖,2 … .𝜋
𝑖,�̅�

𝑦𝑖,�̅�. 𝜋
𝑖,𝕃

𝑦𝑖,𝕃 , and 

ℒ(𝕊|𝝊𝑶, 𝝊𝑫) =

{
 

 ∏ 𝜋𝑡𝑖:
𝑖=𝑛

𝑖=1
from compact count form (𝑵𝑩 model )               (ℒ. 1)

∏ ∏ 𝜋
𝑖,𝑡

𝑦𝑖,𝑡
𝒕=𝕃

𝒕=𝟏

𝒊=𝑛

𝒊=𝟏
: from extended multinomial form (𝑴𝑪𝑳 model) (ℒ. 2)

 

Table 5 details how this function is to be built. Advanced numerical techniques are required to integrate the 

conditional likelihood over random effects and maximize the resulting marginal likelihood. We opted for 

maximizing its Laplace approximation18.  

Table 5. Response records and their probabilities of occurrence according to the 𝑴𝑪𝑳 model. 

 

 

5.2. Capping the categorization 

While the more parsimonious NB pmf extends over the semi-open interval: �̃� ∈ [0, ∞[, the MCL cannot deal 

with an infinite range of logistic effectiveness grades because the 𝚯𝕥-thresholds need to be parametrized. Hence, 

𝕃 must not be too large to avoid overfitting. Prior checking of the empirical distribution of measurements can aid 

in setting this cutoff.  

Figure 5 - which draws in parallel the distributions of delivery times recorded by UNEXTM in 2023, weekday 

per weekday - is quite helpful for that very purpose. Such a splitting is meant to neutralize variations caused by one 

the topmost discriminant fixed factors 19 : i.e.,  𝑊𝑑 . Each box-width is proportional to the square-root of the 

represented subsample size. Noticing that delivery times longer than 10 days pop up as abnormal delays20 , we 

naturally set 𝕃 at 11, thus limiting the influence of outlying transit times represented by the red squares standing 

higher than the upper fence, thus located beyond the 1.5 the interquartile range above the 75th percentile.    

 
18 https://support.sas.com/documentation/cdl/en/statug/63033/HTML/default/viewer.htm#statug_glimmix_a0000001426.htm 
19 See: Tables 6 and 7, hereafter. 
20 For mail collected on Wednesday, Thursday and Friday. the upper fence is located lower: at 8 (We) and 9 (Th, Fr).  

https://support.sas.com/documentation/cdl/en/statug/63033/HTML/default/viewer.htm#statug_glimmix_a0000001426.htm
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Figure 5. Boxplots of delivery time records. 

It comes as no surprise that within each rectangular yellow box the mean (black dot) stands above the median 

(horizontal segment) confirming the positive skewness of each distribution: right tail longer and fatter than the left. 

5.3. Effects 

Annex A2 lists and comments the SAS DATA STEP and LOGISTIC procedure we adapted to parameterize the 

𝑀𝐶𝐿 model on sample 𝕊, through the maximization of the approximation of the marginal distribution of the data 

derived by integration of (ℒ. 2) over the random components. 

5.3.1. Across-the-board discriminative power of covariates 

Tables 6 and 7 summarize the main outputs from fitting the multinomial cumulative logistic and negative 

binomial regression models to 𝕊 . Therein, the factors are ranked – from left to right – in decreasing order of 

statistical significance 21  of their global effect on delivery performance: reflecting the extent to which the 

parameters differentiating their modes depart from zero. More formally – by reference to the predictor function 

(5) –, each of the 𝐹-statistics jointly tests: 

𝐻0 : ⋂ [𝛿𝑚(𝑓)
𝑓

= 0]

𝑚(𝑓)∈{𝑴𝒇|𝑚(𝑓)≠𝑏(𝑓)}

     

againt 𝐻1 : ⋃ [𝛿𝑚(𝑓)
𝑓 ≠ 0]

𝑚(𝑓)∈{𝑴𝒇|𝑚(𝑓)≠𝑏(𝑓)}

, 𝑓𝑜𝑟 𝑓 ∈ 𝓕. 

 
21 That is, by increasing order of associated 𝑝-values. 
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Table 6. 𝑴𝑪𝑳 regression output. 

 

 

Table 7. 𝑵𝑩 regression output. 

 

 

The relatively low significance of effect estimates of   

• envelope size/weight (Sw) is due to advances in sorting technology and wider use of standardized trays and  

containers, which are better suited at handling both large and small formats, 

• the degrees of urbanization (Uo and Ud) may be caused by the inclusion of the random components but also  

partly by unorthodox classifications: several posts use logics like geography or administrative zonal split of the 

territory.   

At the light of the 𝑝-values, it appears that out of the eight fixed predictors, the effects of 𝐶𝑜, 𝐶𝑑,𝑊𝑑, 𝐹𝑘 and 𝑃𝑙  

dominate those of the others, while 𝑈𝑜 matters less, and 𝑆𝑤 as well as 𝑈𝑑 would be considered insignificant by 

those who blindly apply the below-5 -rule (severely criticized by, among others, Bultez et al., 2022). However, we 

kept them all in the model because:  

a. A priori, they look relevant to Posts according to their expertise, therefore, they all determine the stratification  

design (refer to § 3.1.1) and with Agresti (2002, p. 214) we believe that “it is sensible to include a variable that is 

central to the purposes of the study and report its estimated effect even if it is not statistically significant. Keeping it 

in the model may help reduce bias in estimated effects of other predictors”. 
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b. Following suit hundreds of colleagues from all disciplines (Amrhein et al., 2019), we have banned the  

mechanical dichotomization of effects’ estimates into significant versus nonsignificant ones. We should be more 

sagacious and acknowledge that (Mulder and Wagenmakers, 2016, p.1): “the p value does not allow one to 

discriminate absence of evidence (i.e., uninformative data) from evidence of absence (i.e., data supporting the null 

hypothesis)”. 

c. “Expressions of uncertainty” such as 𝑝-values “are themselves uncertain” (Calin-Jageman and Cumming, 2019,  

p.277), conditioned, as they are, by the “model specification, sample selection and the handling of data issues”. 

d. In line with point c, we tested the sensitivity of the empirical statistical criteria to the model specification by  

benchmarking the 𝑴𝑪𝑳 against the negative binomial regression – i.e., (10)-(12) and integral of (ℒ. 1). The SAS 

GLIMMIX procedure used to perform this additional analysis is listed and annotated in annex A.3. Results 

displayed in Table 7 reveal markedly lower 𝐹-statistic values for 𝐶𝑜,𝑊𝑑, 𝑃𝑙, 𝑈𝑜 and 𝑈𝑑. This proves the lack of 

robustness of diagnoses relying solely on such indicators and related 𝑝-values, which depend on the model (c). 

5.3.2. Modal differentiation 

On top of the four reasons (a to d) why we want to keep the specification as complete as possible and are 

reluctant to rely on the sole 𝑝-values to sort out allegedly negligible covariates, one should keep in mind that “larger 

𝑝-values do not imply a lack of importance or even lack of effect … large effects may produce unimpressive 𝑝-values if 

the … measurements are imprecise” (Wasserstein and Lazar, 2016, p. 132). Therefore, specific mode-level effect-sizes 

deserve special attention: Bultez and Herrmann illustrated their relevance through their review of recent 

publications in marketing (2025, sections: The null hypothesis matters and From significance to salience). 

 

To gauge items′ attributes influence on their handling by the posts, let us consider, as in (20), two of them: 

𝒾 ≠ ℓ, but solely differentiated by one factor, say 𝑓: i.e., 𝓂(𝑓) for 𝒾 ≠ 𝔪(𝑓) for ℓ. So, 

𝑥𝒾,𝓂(𝑓)
𝑓 = 𝑥ℓ,𝔪(𝑓)

𝑓 = 1,while: 𝑥𝒾,𝑚(𝒻)
𝒻

= 𝑥ℓ,𝑚(𝒻)
𝒻

, ∀𝑚(𝒻) ∈ 𝑴𝓯, ∀𝒻 ≠ 𝑓. (21.1) 

Then, according to (15.3), this unique dissimilitude results in the following QoS differential: 

𝑞𝒾 − 𝑞ℓ = ∑ 𝛿𝑚(𝑓)/𝜎
𝑓 . (𝑥𝒾,𝑚(𝑓)

𝑓 − 𝑥ℓ,𝑚(𝑓)
𝑓 )

𝑚(𝑓)∈{𝑀𝑓|𝑚(𝑓)≠𝑏(𝑓)}

= 𝛿𝓂(𝑓)/𝜎
𝑓 − 𝛿𝔪(𝑓)/𝜎

𝑓 , 

or, using (5.1), 

𝑞𝒾 − 𝑞ℓ = [(𝛽𝓂(𝑓)
𝑓 − 𝛽𝑏(𝑓)

𝑓 ) − (𝛽𝔪(𝑓)
𝑓 − 𝛽𝑏(𝑓)

𝑓 )] 𝜎⁄ = (𝛽𝓂(𝑓)
𝑓 − 𝛽𝔪(𝑓)

𝑓 ) 𝜎⁄ . 

Thus, mode 𝓂(𝑓) can be contrasted with mode 𝔪(𝑓) by assessing to what extent 

• either the standardized difference between related parameters departs from zero: 

∆𝓂(𝑓),𝔪(𝑓)
𝑓 = (𝛽𝓂(𝑓)

𝑓 − 𝛽𝔪(𝑓)
𝑓 ) 𝜎⁄ = 0⟹ 𝑞𝒾 = 𝑞ℓ, (21.2) 

• or the corresponding odds ratio deviates from 1, since (20) implies: 

𝑞𝒾 = 𝑞ℓ ⟹ 𝑂𝑅𝒾,ℓ ≡ 𝑂𝑅𝓂(𝑓),𝔪(𝑓)
𝑓 = 𝑒0 = 1. (21.3)

Henceforth, if ∆𝓂(𝑓),𝔪(𝑓)
𝑓 ≅ 0, or 𝑂𝑅𝓂(𝑓),𝔪(𝑓)

𝑓 ≅ 1, modes 𝓂(𝑓) and 𝔪(𝑓) need not be singled out.  

 



Bultez and Seghers                                               Journal of Economic Analysis 4(2) 91-155 

119 

 

Both (21.2)  and (21.3)  materialize the ceteris paribus QoS differentials in the delivery of letters 

characterized by dissimilar modes of a single predictor. They inform about the possibilities of pooling these 

modes … gradually and prudently because, as Goodman et al. (2019, p. 170) rightly pointed it, “there is no fixed 

answer for how large a difference must be from the null to be considered meaningful”. In fact, the substantiveness of 

effects can only be assessed contextually, against a “meaningful” benchmark, but “in practice” fixing such a reference 

value “is complicated”, and having it endorsed by stakeholders who don’t share common views is even trickier 

(Betensky, 2019, pp. 115-116). Therefore, we prefer for MCL models appreciating mode-level effect-sizes in relative 

probabilistic terms, through odds ratios, contrasted with those observed for other relevant modes. For that purpose, 

plots parallelizing their confidence intervals facilitate the comparisons of the magnitudes and imprecisions of 

effects’ measurements. Such forest charts were popularized in medicine to sum up reviews of experimental results: 

e.g., Harrell (2015, pp. 281-282) alternates between log-odds (op. cit., Figure 11.2) and “intervals drawn on the log 

odds ratio scale but labelled on the odds ratio scale” (op. cit., Figure 11.3). Figure 6 illustrates how such forest charts 

facilitate the assessment of the relative magnitudes of class effects underlying a nominal predictor. Here, it 

highlights weekdays’ differentials (𝑊𝑑), i.e. the most discriminant factor in 2023, as shown by Tables 6 and 7. Its 

ordinates (vertical axis) are meaningless: they simply correspond to the ordering of the legend).  

 

 

Figure 6. 95% Confidence intervals of odds ratios contrasting weekdays on which letters get posted: 

𝑂𝑅𝓂(𝑊𝑑),𝔪(𝑊𝑑)
𝑊𝑑 , with 𝓂(𝑊𝑑) ≠ 𝔪(𝑊𝑑) ∈ {𝑀𝑜, 𝑇𝑢,𝑊𝑒, 𝑇ℎ, 𝐹𝑟, 𝑆𝑎}. 

 

Interval positioning and extents are to be judged along the horizontal axis22.  

 
22 One should be cautious when comparing the magnitudes of odds ratios inferred from logistic regression on different samples, or 
from different models, for (21.2) reminds us that modes’ differentials are scaled in 𝜎-unit: “Different odds ratios from the same study 
cannot be compared when the statistical models that result in odds ratio estimates have different explanatory variables because each 
model has a different arbitrary scaling factor. Nor can the magnitude of the odds ratio from one study be compared with the magnitude of 
the odds ratio from another study, because different samples and different model specifications will have different arbitrary scaling factors. 
A further implication is that the magnitudes of odds ratios of a given association in multiple studies cannot be synthesized in a meta-
analysis” (Norton et al., 2018, p. 84). 
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Figure 6 makes it clear that grouping mailing days is out of question: none of the segments of estimates most 

compatible with 𝕊  is close to overlapping the no-difference line. The nearest one is 𝑂�̂�𝑀𝑜,𝑆𝑎
𝑊𝑑  and it implies: 

�̂�𝑀𝑜
𝑊𝑑 > �̂�𝑆𝑎

𝑊𝑑 . All those located to the right of the demarcation involve 𝑆𝑎𝑡𝑢𝑟𝑑𝑎𝑦 and are such that: 

𝑂�̂�𝑀𝑜,𝑆𝑎
𝑊𝑑 <𝑂�̂�𝑇𝑢,𝑆𝑎

𝑊𝑑 < 𝑂�̂�𝑊𝑒,𝑆𝑎
𝑊𝑑 < 𝑂�̂�𝑇ℎ,𝑆𝑎

𝑊𝑑 < 𝑂�̂�𝐹𝑟,𝑆𝑎
𝑊𝑑 , 

• letters mailed on 𝑆𝑎𝑡𝑢𝑟𝑑𝑎𝑦 are handled less efficiently than those posted on any other day: 

𝛽𝑚(𝑊𝑑)
𝑊𝑑 > 𝛽𝑆𝑎

𝑊𝑑 , ∀𝑚(𝑊𝑑) ≠ 𝑆𝑎,   

• the ranking of weekdays’ coefficients in increasing order logistic efficacy corresponds to the chronology: 

𝛽𝑀𝑜
𝑊𝑑 < 𝛽𝑇𝑢

𝑊𝑑 < 𝛽𝑊𝑒
𝑊𝑑 < 𝛽𝑇ℎ

𝑊𝑑 < 𝛽𝐹𝑟
𝑊𝑑 . 

The widest confidence intervals also materialize contrasts with 𝑆𝑎𝑡𝑢𝑟𝑑𝑎𝑦, indicating that delivery time of letters 

posted on weekends is highly uncertain. 

5.4. QoS thresholds 

Intercepts in the MCL model define critical performance levels along the QoS continuum. Thereby, these 

unknown constants contribute to determining the probabilities of delivery within deadlines. Thus, from analyzing 

gaps between them, much can be learned about efficiency efforts to be put in delivery operations. Therefore, it is 

worth pondering to what extent the values of these cut-points grow as the cutoff dates for receiving letters get closer 

to their posting day. 

5.4.1. Uneven spurts 

Successive jumps in thresholds can be statistically assessed by testing the following hypotheses:  

𝐻0: Θ𝕥 = Θ𝕥+1 versus 𝐻1: Θ𝕥 > Θ𝕥+1, for 𝕥 ∈ {1,2,3,4,5,6,7,8,9}, 

or equivalently, 𝐻0: 𝜃𝕥|𝐵 − 𝜃𝕥+1|𝐵 = 0  versus ∶  𝜃𝕥|𝐵 − 𝜃𝕥+1|𝐵 > 0, for 𝕥 ∈ {1,2,3,4,5,6,7,8,9}, 

because according to (15.4), 𝜃𝕥|𝐵 = 𝜃𝕥 − (𝚩 𝜎⁄ ) ⟹ 𝜃𝕥|𝐵 − 𝜃𝕥+1|𝐵 = 𝜃𝕥 − 𝜃𝕥+1 = (Θ𝕥 𝜎⁄ ) − (Θ𝕥+1 𝜎⁄ ). 

Under SAS, these tests can be programmed using the CONTRAST-statements of the GLIMMIX procedure, 

specified as in paragraph II.2 of annex A2. The outputs from the execution of these statements are, however, too 

succinct: only the 𝑧2- and 𝑝-values assessing the significance of the discrepancies are produced by SAS. Hence, we 

programmed those comparative tests through the %Cut_points-MACRO listed in section III of annex A2. Table 8 

reports the output from the execution of this MACRO: as 𝑝-values are all extremely close to zero (for 𝑧 > 5, the 

one-tail 𝑝 is lower than 2.87x10−7), they are not displayed. Thus, as all differences are highly significantly positive: 

𝐻1 holds true. Focusing on the third column, reading the �̂�𝕥,,𝕥+𝟏-values bottom-up, one realizes that the higher the 

performance level reached (smaller 𝕥), the larger the difference between estimated thresholds (up the ladder) 

becomes, the harder it is to shave a day off the delivery time. In other words, the higher the QoS-threshold is, the 

lower the probability of speeding up the process by one day: 

𝜃𝕥 ≫ 𝜃𝕥+1 ⟹ 𝑃(�̃�𝑖 > Θ𝕥) ≪ 𝑃(�̃�𝑖 > Θ𝕥+1) ⟹ 𝑃(�̃�𝑖 ≤ 𝕥) ≪ 𝑃(�̃�𝑖 ≤ 𝕥 + 1). 

 

5.4.2. Double jeopardy 

The consequences of ever-rising �̂�𝕥,,𝕥+𝟏-steps exhibited in Table 8 can be more precisely inferred from (19): 

𝑙𝑛(𝕆(𝕋𝑖 ≤ 𝕥) 𝕆(𝕋𝑖 ≤ 𝕥 + 1)⁄ ) = (𝑞𝑖 − 𝜃𝕥|Β) − (𝑞𝑖 − 𝜃𝕥+1|Β) = −( 𝜃𝕥|Β − 𝜃𝕥+1|Β) =  −(𝜃𝕥 − 𝜃𝕥+1). 

This formula establishes that the ratio of odds in favour of the shorter delivery time declines exponentially with the 

QoS ladder rung spacing: 

𝑶𝑹𝕥+𝟏
𝕥 = 𝕆(𝕋𝑖 ≤ 𝕥) 𝕆(𝕋𝑖 ≤ 𝕥 + 1)⁄ = 𝑒−(𝜃𝕥−𝜃𝕥+1) = 𝑒−∆𝕥,𝕥+𝟏 . (22) 

The last column of Table 8 and Figure 7 empirically demonstrate the conjunction of escalating �̂�𝕥,,𝕥+𝟏-jumps 

with the non-linearity in the fall of favourable odds. 
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Table 8. Increasing jumps in QoS required to enhance probability of delivery within a shortened deadline. 

 

 

Figure 7. Drops in the odds for a one-day faster delivery time  

resulting from increasing leaps in QoS thresholds. 
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5.4.3. Lead-time shrinking comes at a price 

The efficiency gain needed to win a day can best be realized by visualizing the failure-to-achieve-target risks, 

which according to (18.2) are to be estimated by: 

�̂�(𝕥|�̂�) = �̂�(�̃� > 𝕥|�̂�) = 𝐹(𝜃𝕥 − �̂�). (23) 

Note that, while subscript 𝑖 is now superfluous - since for predictions of response functions there is no need to 

distinguish items -, one must make clear that such probability of flop is conditioned by the QoS-level. Figure 8 maps 

the risk-curves for 𝕥 ∈ {1,2,3,4,5,6,7,8,9,10} generated by (23), using the 𝜃𝕥 values reported in Table 7, one curve 

per target 𝕥. 

 

Figure 8. Risks of missing deadlines decrease as QoS improves. 

This graph illustrates that for every deadline, superior QoS levels (plotted along the horizontal axis) entail lower 

risks of delivery beyond the targeted deadline (plotted along the vertical axis); tighter deadlines translate into 

higher risks: the smaller 𝕥, the upper the curve. Thus, the difficulty of delivering within shorter time spans increases 

exponentially. Eyeballing this graph, horizontally from left to right, one sees that to ensure a fixed degree of risk, 

efficiency gains to be achieved to reach more stringent targets escalate at an accelerating rate: e.g., the sizes of non-

filled black-block arrows at the ordinate �̂�(𝕥|�̂�) = 0.4 patently stretch as 𝕥 shrinks. The dual reality is as obvious, 

since examining enlarging gaps, bottom-up along the black arrows, one realizes that jumps in the risk of failure 

become greater and greater:  

[�̂�(9|�̂�) − �̂�(10|�̂�)] < ⋯ [�̂�(5|�̂�) − �̂�(6|�̂�)] < [�̂�(4|�̂�) − �̂�(5|�̂�)] < [�̂�(3|�̂�) − �̂�(4|�̂�)] < [�̂�(2|�̂�) − �̂�(3|�̂�)]. 
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5.5. Confirmation by the NB, from two other outlooks 

Thus far, from the MCL model optimal fitting, we inferred risks of missing due dates: �̂�(𝕥|�̂�,𝑴𝑪𝑳). Still, the 

probability mass function defining chances of delivery of a letter exactly 𝕥 days after its posting may teach us even 

more. According to formula (16.1), these chances result from the following differences: 

π̂𝕥|�̂�,,𝑴𝑪𝑳 = �̂�(�̃� = 𝕥|�̂�,𝑴𝑪𝑳) =  Λ(�̂� − 𝜃𝕥) − Λ(�̂� − 𝜃𝕥−1). (24) 

Rather, should one calibrate the NB model, equations (10) and (11) would apply to yield another set of estimates: 

π̂𝕥|𝑸,̂ 𝑵𝑩 = �̂�(�̃� = 𝕥|�̂�, 𝑵𝑩) =
𝛤(𝕥 − 1 + �̂�−1)

𝛤(�̂�−1).𝛤(𝕥)
 . �̂�(1 �̂�⁄ ). (1 − �̂�)𝕥−1, with: �̂� =

1

1 + (�̂�. �̂�)
 and �̂� =  𝑒−�̂�. (25) 

In (24) and (25), the model label is added in the condition specification, to make clear that we don’t expect that: 

π̂𝕥|𝑸,̂𝑵𝑩 = π̂𝕥|𝒒,̂𝑴𝑪𝑳. Figure 9 synthesizes the distributions of probabilities estimated by (24) and (25), for 𝕥 = 1 

up to 𝕥 = 5 , using the same colours as in Figure 8. 

 

Figure 9. Polytomous distributions of predicted probabilities of delivery 𝕥 days after posting. 

On this chart, the π̂𝕥|�̂�,,𝑴𝑪𝑳- and π̂𝕥|𝑸,̂ 𝑵𝑩-curves are contrasted by lines with different widths: the thicker ones 

for the π̂𝕥|�̂�,,𝑴𝑪𝑳 . They result from plotting models’ fitted values for the 51,869  effectively surveyed strata, 

according to identically scaled ordinates, while their predictors - i.e., the estimates of the latent QoS - are to be read 

in abscissa. Note that as the two models generate dissimilar QoS scores: �̂� ≠ �̂� , we rescaled �̂�  by a linear 

transformation (determined by regressing �̂� on �̂�)23 to warrant comparability of the π̂𝕥|𝑸,̂ 𝑵𝑩 with the π̂𝕥|�̂�,,𝑴𝑪𝑳 . 

Both sets indicate how chances of faster shipping escalate at the expense of probabilities of slower dispatching as 

QoS gets enhanced. Except for the shortest delivery time (i.e., 𝕥 = 𝟏), all curves increase first and, after culminating 

 
23 �̂� is relatively highly positively correlated with �̂�: 𝑅 = 0.96 (regression coefficient: 3.36, intercept: 9.45). Although this rescaling 
of �̂� into �̂�-units is imperfect, it enables us to plot on the same graph (Figures 9 and 10) the response probabilities inferred from 
the two models. 
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at a peak (beyond the limits of the graph for 𝕥 = 𝟐), decrease. Over the entire range of estimated QoS-levels, 

π̂1|�̂�,,𝑴𝑪𝑳  and �̂�1|�̂�,𝑵𝑩 rise very slowly first and then rapidly while π̂𝕃|�̂�,,𝑴𝑪𝑳 and �̂�𝕃|�̂�,𝑵𝑩 (not displayed to make 

the graph more readable) fall all the way through quite sharply. Scanning the graphs from right to left, one notices 

that peaks for shorter delivery times (dominating on the right side) stand above, and are located to the right of, 

those for longer ones (dominated on the left), just because the better (worse) the QoS, the more likely shorter 

(longer) delivery times are. Shapes of the π̂𝕥|�̂�,,𝑴𝑪𝑳  and π̂𝕥|𝑸,̂𝑵𝑩  curves are pretty much alike in their overall 

appearance. A closer look at them reveals that as the deadline gets shortened, peaks predicted by NB tend to detach 

more and more from those predicted by the MCL. Table 9 strengthens this impression. 

Table 9. Distances between peaks in probabilities of delivery 𝕥 days after posting. 

 

More importantly, the NB model, like the MCL, also captures the fact that reducing delivery time requires 

increasingly demanding endeavors in QoS, objectified by Figure 10. 

 

Figure 10. Enlarging gaps between QoS-levels to preserve chances of delivering by the due date. 
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Cumulative variant of Figure 9, Figure 10 is the positive dual of Figure 8 since it gathers chances of punctual 

conveyance, inferred from both models: Π̂𝕥|�̂�,𝑴𝑪𝑳 and Π̂𝕥|�̂�,𝑵𝑩, for the strata surveyed in 2023. It shows, once more, 

that as we go down from 𝕥 = 5 to 𝕥 = 1, one day at a time, the objective becomes more and more challenging, a 

point already made in § 5.4.2 and 5.4.3, but just for the MCL and from the risks of delays’ angle. Distances between 

curves – stressed by the horizontal left-to-right filled block-black arrows separating the NB-based estimates of 

chances to meet deadlines - measure the additional productivity needed to cut the delivery time by one more day, 

while maintaining the probability of intime delivery (here, at 0.3): the necessitated extra effort obviously raises 

with the level of effectiveness already attained. Thus, both models signal that some form of law of diminishing 

returns to investments in QoS applies to postal logistics: technological limitations are at work. 

5.6. Benchmarking NB against MCL  

From a managerial viewpoint, the two models had better be compared by reviewing more closely predictions 

of stratum-level punctuality rates: i.e., the probabilities of delivery within fixed deadlines (i.e., by 𝕥, at the latest) 

defined in section 4. Figure 10 can only roughly24 help visualize (dis)similarities between the those generated by 

the NB model against those produced by the MCL model; eyeballing it, we can just assert: (a) the NB overrates the 

MCL-estimates of chances of delivery within one day, and so much so that QoS is high; (b) over-(under-)grading of 

chances of delivery within two days by the NB occurs at lower(upper) QoS-levels. Therefore, to get a more accurate 

picture we benchmarked one model’s predictions against those provided by the second through linear regression 

equations, i.e. one equation per 𝕥-deadline: 

Π̂𝑠,𝕥|𝑴𝑪𝑳 = 𝜅0 + 𝜅1. Π̂𝑠,𝕥|𝑵𝑩 on the strata covered by 𝑈𝑁𝐸𝑋 in 2023: 𝑠 ∈ {1, 2, 3, … , 𝑛𝑆 = 51,869}. (26) 

Table 10 sums up the results of these fits. It sheds light on the correlations between the two sets of predictions, 

as well as on the over(under)estimation of the regressand (MCL) by the regressor (NB). 

Table 10. Relationships between model-predicted probabilities of delivery within deadlines. 

 

 
24 Because of the non-exact match of the QoS-scores (cf. footnote 23 about the scale of the horizontal axis). 
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The coefficients of determination (𝑹²) are reasonably high and estimates of 𝜿𝟏 are positive: as it should, 

correlations are positive and relatively strong. For 𝕥 = 𝟏, 𝜿𝟎 is negative and 𝜿𝟏 is much smaller than 1 which 

means that for all strata, Π̂𝑠,1|𝑵𝑩 largely overestimates Π̂𝑠,1|𝑴𝑪𝑳 , which Figure 9 revealed: π̂𝑠,1|𝑵𝑩 > π̂𝑠,1|𝑴𝑪𝑳 , and 

Figure 10 confirmed: Π̂𝑠,1|𝑵𝑩 > Π̂𝑠,1|𝑴𝑪𝑳  (blue curves: the first in the legend). From 𝕥 = 𝟏  up to 𝕥 = 𝟓 , the 

overestimation (resp. underestimation) rate decreases (increases). For sure, the predictions from the NB model fall 

short of approximating those derived from the MCL. 

 

5.7. Takeaways 

Winkelmann (2008, p. 68) rightly pointed out: “…ordinal models can also be used for counts as long as the 

number of different counts observed in the sample is not too large. The number of threshold parameters that require 

estimation increases with the observed sample space by one-to-one … Ordered models in general provide a better 

fit to the data than pure count data models. The threshold parameters give the flexibility to align predicted 

and actual frequencies.” He further noted that: “However, their use for modeling count data has a number of serious 

deficiencies. 

• They are theoretically implausible as a model for counts. They are not based on the concept of an underlying 

count process. 

• Counts are cardinal rather than ordinal. Hence, under the ordinal approach, the sequence “2, 5, 50” is assumed 

to carry the same information as the sequence “0, 1, 2” which is not the case for count data. Ordinal models disregard 

this information and cannot be efficient. 

• One reason of having parametric models in the first place is the ability of predicting the probability of arbitrary 

counts. While genuine count data models can do that, ordered models can only predict outcomes that are actually 

observed in the sample.” 

 

Winkelmann’s critique of the “ordinal models” – of which the MCL is the most representative – is too severe in 

its first two points, and a bit at odds with his first appreciative statement. Nevertheless, we can only agree with his 

conclusive comment (ibidem): “the use of ordered models for count data, and the interpretation of the results, has to 

proceed with necessary caution. In practice, applications of ordered models to count data are uncommon” … So rare 

indeed that Winkelmann did not make reference to any such application, and we, ourselves, could not find one. 

 

Now, as far as transportation logistics are concerned, we weighed up the value added by the inclusion and 

parameterization of QoS thresholds which ordinal regression models ordain. Notwithstanding Agresti (2019, p. 170) 

stated that shift-parameters (specifically, the 𝜃𝕥-intercepts in the MCL specification) are usually “not of interest 

except for estimating response probabilities”, here above, we proved they are most relevant to grasp the highly 

nonlinear variations in such probabilities. Thereby, we demonstrated the instrumentality of these constants 

generally considered mere “intercepts” not even worth commenting: in this respect, Figure 7 is particularly 

instructive. Correlatively, we proved - from the service provider’s viewpoint - that time measures had better not 

be treated as cardinal numbers: delivery time must rather be handled as a categorial ordinal variable. And 

we believe that what goes for purveyors goes also for their clients, whose perceptions of delays are likely to be 

biased upwards. Consequently, count models fall short of accounting for the true nature of durations in the supply 

chain context. Along those lines, such statistics as mean durations (or delays) can only be misleading: a case in point 

is the UPU (Universal Postal Union) who solely displays and expounds evolutions of “averages” and “standard 

deviations” of delivery times (2023, pp. 50-51) in their report on the postal sector. 
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6. Punctuality metrics 

The wrap-up of part 5 rationalized the use of the MCL model to infer the aggregate KPIs: 

�̂̂�(𝑶𝟐𝑫, 𝕥)  ≤ �̂�(𝑶𝟐𝑫, 𝕥)  ≤  �̂̂�(𝑶𝟐𝑫, 𝕥), for 𝑂2𝐷 ∈ { 𝐶𝑜2𝐶𝑑, 𝐶𝑜2𝐸𝑢, 𝐸𝑢2𝐶𝑑, 𝐸𝑢2𝐸𝑢} 𝑎𝑛𝑑 𝕥 ∈ {1,2,3,4,5,6,7,8,9,10}. 

These indicators can indeed be calculated from the strata-level estimates of probabilities of delivery within a 

fixed deadline of 𝕥 periods: Π̂𝑠,𝕥 as explained in sections 3.2 to 3.4. The latter can themselves be predicted for all 

relevant strata - i.e., non-zero weight, surveyed as well as non-tested ones: ANS = 333,792 - from the estimates of 

the parameters of the MCL model, through the SAS Postfitting Linear Model (PLM) procedure (§ VI.1 in Annex A4). 

6.1. Approaching properties of KPIs estimates 

Gauging the imprecision of the KPIs is less straightforward. Indeed, the standard errors of the �̂�(𝑶𝟐𝑫, 𝕥), and 

their bounds, depend on the extremely numerous variances of, and covariances between their Π̂𝑠,𝕥-components - 

i.e., 𝐴𝑁𝑆 × (𝐴𝑁𝑆 − 1) 2⁄ = 55,708,382,736 - which themselves result from combinations of variances of, and 

covariances between the estimators of the many (86) parameters - i.e., the 76 coefficients25:, and 10 thresholds: 

𝜃𝕥|𝐵  - in equation (15.3). Thus, working out the [86 × 86]-Hessian of the loglikelihood of the sample, inverting 

that matrix, relying on the Cramér-Rao lower bound to derive the huge variance-covariance matrix of the Π̂𝑠,𝕥 and 

then deduce the standard errors of the KPI estimates is a rather demanding process. Therefore, we opted for the 

bootstrapping technique which regards the sample on hand (𝕊) as if it were the parent population itself (Efron 

and Tibshirani,1994). Figure 11 sketches this process.  

 

 

 

Figure 11. Resampling data to mimic the universe. 

Table 11 details it. Annex A4 explains the code programmed to run it. It infers results for a universe, from estimates 

compiled by repeating the econometric analysis - as carried out in section 5 - on a sufficiently large number 

(denoted 𝓑) of samples of the same size (𝑛 = 105,889), generated by random selection - with replacement - from 

the available sample of test-records. In the following, only the results obtained for 𝕥 = 5 are reported. These are 

what IPC calls the reliability KPIs. 

 
25 𝛿𝑚(𝑓)/𝜎

𝑓 , cf. bottom of the second column of Table 1: 77 − 1 = 76, as 𝐴𝑑 is no longer considered. 
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Table 11. Inference algorithm through resampling. 

 

6.2. Robustness of the estimates of the KPIs 

The number 𝓑 of bootstrapped resamples – identified by (𝑏)-superscripts – required to get dependable 

point and interval estimates should be high enough to probe the tails of the estimators’ distributions. Therefore, 

given that “the use of 2000 replicates has been suggested by different sets of authors as reasonable when estimating 

bootstrap percentile intervals” (Austin and Leckie, 2020, p. 3196), 𝓑 was set equal to 10,000. To make sure that 

such a high 𝓑 is sufficient, one must first check that the simulated distributions of the KPI estimates look normal, 

because they result from maximum-likelihood estimators calibrated on a sample so large that asymptotic 

properties should hold. This is the case, as evidenced by Figure 12, for the Eu2Eu-KPIs. These four histograms are 

identically scaled to facilitate comparisons. As expected, they all reveal symmetrical and bell-shaped: gaussian 

density curves fit them perfectly well. Those in the left panels - depicted for benchmarking purposes - result from 

simulations where local random variations were neutralized. 
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 The right panel graphs display the distributions of KPI values impacted by the spatial heterogeneity. These 

are much more dispersed than those in the left ones, they are the ones from which to draw the extreme confidence 

limits: 

• the lower bound from the upper rectangle, that of the minima, 

• the upper bound from the lower rectangle, that of the maxima, which of course appears to be shifted to the  

 right with respect to the top one, as it should. 

Obviously, the uncertainty caused by spatial heterogeneity matters much more than that attributable to the lack of 

knowledge of the exact weighting schemes. 

 

 

Figure 12. Histograms of Eu2Eu-KPIs estimates derived from the 10,000 bootstrap samples. 

Figure 12 passes the face-validity tests but just eyeballing it does not fully establish the consistency of the 

bootstrapping results. These are further assessed by the statistics explained in Table 12,   
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Table 12. Two alternative modes of calculation of boundary critical points. 

 

One can indeed verify that the limits of the confidence intervals can be  

• either, directly determined, non-parametrically, by the relevant percentiles, as in Figure 11: [𝑃𝛼 2⁄
𝑂2𝐷,𝕥, 𝑃[1−(𝛼 2⁄ )]

𝑂2𝐷,𝕥 ], 

• or, obtained by subtracting/adding the value of the standard normal variate, 𝑍, corresponding to the   

[1 − (𝛼 2⁄ )]𝑡ℎ centile: 𝑧[1−(𝛼/2)], times the standard deviation from the mean26: [𝑁𝐶𝐼𝛼 2⁄
𝑂2𝐷,𝕥,𝑁𝐶𝐼[1−(𝛼 2⁄ )]

𝑂2𝐷,𝕥  ]. 

Table 13 confirms that for the usual confidence-levels – 𝟏− 𝜶 = 99%, 95% and 90  – the 𝑧-based approach and 

the percentile method yield rather close values: 𝑁𝐶𝐼𝛼 2⁄
𝐸𝑢2𝐸𝑢,5 ≅ 𝑃𝛼 2⁄

𝐸𝑢2𝐸𝑢,5  and 𝑁𝐶𝐼[1−(𝛼/2)]
𝐸𝑢2𝐸𝑢,5 ≅  𝑃[1−(𝛼 2⁄ )]

𝐸𝑢2𝐸𝑢,5 . 

 

So, the most extreme bounds are:  

(1) for the lower, from �̂̂�(𝑬𝒖𝟐𝑬𝒖,𝟓) ⟹{

𝑁𝐶𝐼0.5%
𝐸𝑢2𝐸𝑢,5 = 80.656% or 𝑃0.5%

𝐸𝑢2𝐸𝑢,5 = 80.616%

𝑁𝐶𝐼2.5%
𝐸𝑢2𝐸𝑢,5 = 81.025%  or 𝑃2.5%

𝐸𝑢2𝐸𝑢,5 = 80.998%

𝑁𝐶𝐼5%
𝐸𝑢2𝐸𝑢,5 = 81.214%  or 𝑃5%

𝐸𝑢2𝐸𝑢,5 = 81.188%

 

(2) for the upper, from �̂̂�(𝑬𝒖𝟐𝑬𝒖, 𝟓) ⟹ {

 𝑁𝐶𝐼99.5%
𝐸𝑢2𝐸𝑢,5 = 84.019%  or 𝑃99.5%

𝐸𝑢2𝐸𝑢,5 = 83.962%

𝑁𝐶𝐼97.5%
𝐸𝑢2𝐸𝑢,5 = 83.667%  or 𝑃97.5%

𝐸𝑢2𝐸𝑢,5 = 83.631%

𝑁𝐶𝐼95%
𝐸𝑢2𝐸𝑢,5 = 83.486%  or 𝑃95%

𝐸𝑢2𝐸𝑢,5 = 83.462%

 

 

 
26 These are called “studentized”, or “bootstrap-𝑡”, confidence limits, by reference to the Student’s 𝑡-distribution, which can be 

approximated by the standardized normal, denoted 𝑧, when the number of degrees of freedom is large (> 30). 
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Table 13. Ranges of estimates for Eu2Eu-KPIs. 

 

 

And the most extreme error margins are determined by the difference between the highest upper bound on 

�̂̂�(𝑬𝒖𝟐𝑬𝒖, 𝟓), and the lowest lower bound on �̂̂�(𝑬𝒖𝟐𝑬𝒖, 𝟓). Thus, 

𝜀1−𝛼
𝐸𝑢2𝐸𝑢,5 = {

𝜀99%
𝐸𝑢2𝐸𝑢,5 = (𝑁𝐶𝐼99.5%

𝐸𝑢2𝐸𝑢,5 −𝑁𝐶𝐼0.5%
𝐸𝑢2𝐸𝑢,5) = 3.364% or  (𝑃99.5%

𝐸𝑢2𝐸𝑢,5 − 𝑃0.5%
𝐸𝑢2𝐸𝑢,𝕥) = 3.346%

𝜀95%
𝐸𝑢2𝐸𝑢,5 = (𝑁𝐶𝐼97.5%

𝐸𝑢2𝐸𝑢,5 −𝑁𝐶𝐼2.5%
𝐸𝑢2𝐸𝑢,5) = 2.641%  or  (𝑃97.5%

𝐸𝑢2𝐸𝑢,5 − 𝑃2.5%
𝐸𝑢2𝐸𝑢,5) = 2.634%

 𝜀90%
𝐸𝑢2𝐸𝑢,5 = (𝑁𝐶𝐼95%

𝐸𝑢2𝐸𝑢,5 −𝑁𝐶𝐼5%
𝐸𝑢2𝐸𝑢,5) = 2.272%  or  (𝑃95%

𝐸𝑢2𝐸𝑢,5 − 𝑃5%
𝐸𝑢2𝐸𝑢,5) = 2.274%.

 

Whatever the way they are arrived at, they seem reliable since both methods converge to practically equal margin-

sizes.  

  

Table 14 complements the evidence of reliability provided above for the overall aggregate Eu2Eu-KPI. It sums 

up the regression analyses of 

 

• means on medians, to check the symmetry of the distributions, 

• and of extreme normalized confidence limits on corresponding percentiles: 

𝑁𝐶𝐼𝛼 2⁄
𝑂2𝐷,5 on  𝑃𝛼 2⁄

𝑂2𝐷5𝕥 and 𝑁𝐶𝐼1−(𝛼 2⁄ )
𝑂2𝐷,5  on  𝑃1−(𝛼 2⁄ )

𝑂2𝐷,5  

from both the outbound and inbound outlooks: 𝑂2𝐷 ∈ {𝐶𝑜2𝐸𝑢, 𝐸𝑢2𝐶𝑑},  

and for the 95  and 99  confidence levels. 

 

All coefficients of determination (𝑅2: rounded to the 5th  decimal place)  are close to 1 indicating a quasi-perfect 

correlation between the associated dependent and independent variables. Intercepts are very close to 0, coefficients 

neighbor 1, which implies quasi-equalities.  
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Table 14. Additional tests of consistency. 

TESTS 

𝑶𝑼𝑻𝑩𝑶𝑼𝑵𝑫 𝑷𝑬𝑹𝑺𝑷𝑬𝑪𝑻𝑰𝑽𝑬:𝑪𝒐𝟐𝑬𝒖 

�̂̂�(𝑪𝒐𝟐𝑬𝒖, 𝟓) �̂̂�(𝑪𝒐𝟐𝑬𝒖, 𝟓) 

SYMMETRY 
Regression of Means on Medians 

Intercept Coefficient 𝑹𝟐 Intercept Coefficient 𝑹𝟐 

Estimate -2.31E-04 1.00087 
1 

-0.00018 1.00079 
1 

𝑝-value 21.27  0.00  31.54  0.00  

99% Confidence 
Regression of 𝑵𝑪𝑰𝟎.𝟓%

𝑪𝒐𝟐𝑬𝒖,𝟓 on  𝑷𝟎.𝟓%
𝑪𝒐𝟐𝑬𝒖,𝟓  Regression of 𝑵𝑪𝑰𝟗𝟗.𝟓%

𝑪𝒐𝟐𝑬𝒖,𝟓 on  𝑷𝟗𝟗.𝟓%
𝑪𝒐𝟐𝑬𝒖,𝟓  

Intercept Coefficient 𝑹𝟐 Intercept Coefficient 𝑹𝟐 

Estimate 0.00130 0.99466 
1 

-0.00011 0.99692 
0.99993 

𝑝 -value 29.22  0.00  93.16  0.00  

95% Confidence 
Regression of 𝑵𝑪𝑰𝟐.𝟓%

𝑪𝒐𝟐𝑬𝒖,𝟓 on  𝑷𝟐.𝟓%
𝑪𝒐𝟐𝑬𝒖,𝟓  Regression of 𝑵𝑪𝑰𝟗𝟕.𝟓%

𝑪𝒐𝟐𝑬𝒖,𝟓 on  𝑷𝟗𝟕.𝟓%
𝑪𝒐𝟐𝑬𝒖,𝟓  

Intercept Coefficient 𝑹𝟐 Intercept Coefficient 𝑹𝟐 

Estimate 0.00042 0.99764 
1 

0.00057 0.99766 
0.99998 

𝑝 -value 46.54  0.00  37.49  0.00  

TESTS 

𝑰𝑵𝑩𝑶𝑼𝑵𝑫 𝑷𝑬𝑹𝑺𝑷𝑬𝑪𝑻𝑰𝑽𝑬: 𝑬𝒖𝟐𝑪𝒅 

�̂̂�(𝑬𝒖𝟐𝑪𝒅,𝟓) �̂̂�(𝑬𝒖𝟐𝑪𝒅,𝟓) 

SYMMETRY 
Regression of Means on Medians 

Intercept Coefficient 𝑹𝟐 Intercept Coefficient 𝑹𝟐 

Estimate -4.98E-04 1.00126 
1 

-3.36E-04 1.00107 
1 

𝑝 -value 0.47  0.00  8.75  0.00  

99% Confidence 
Regression of 𝑵𝑪𝑰𝟎.𝟓%

𝑬𝒖𝟐𝑪𝒅,𝟓 on  𝑷𝟎.𝟓%
𝑬𝒖𝟐𝑪𝒅,𝟓  Regression of 𝑵𝑪𝑰𝟗𝟗.𝟓%

𝑬𝒖𝟐𝑪𝒅,𝟓 on  𝑷𝟗𝟗.𝟓%
𝑬𝒖𝟐𝑪𝒅,𝟓  

Intercept Coefficient 𝑹𝟐 Intercept Coefficient 𝑹𝟐 

Estimate 0.00321 0.99210 
0.99993 

0.00408 0.99203 
0.99994 

𝑝 -value 0.65  0.00  0.08  0.00  

95% Confidence 
Regression of 𝑵𝑪𝑰𝟐.𝟓%

𝑬𝒖𝟐𝑪𝒅,𝟓 on  𝑷𝟐.𝟓%
𝑬𝒖𝟐𝑪𝒅,𝟓  Regression of 𝑵𝑪𝑰𝟗𝟕.𝟓%

𝑬𝒖𝟐𝑪𝒅,𝟓 on  𝑷𝟗𝟕.𝟓%
𝑬𝒖𝟐𝑪𝒅,𝟓  

Intercept Coefficient 𝑹𝟐 Intercept Coefficient 𝑹𝟐 

Estimate 0.0014 0.99640 
0.99999 

0.00177 0.99613 
0.99999 

𝑝 -value 0.26  0.00  0.13  0.00  

 

6.3. Contribution of the model-based poststratification 

The necessity of poststratification of measurements can be underscored by diagramming the weighted values 

of the KPIs against the corresponding non-weighted sampled in-time proportions. This benchmarking can be 

visualized no better than by mapping those two sets of estimates on a square Cartesian graph designed to grasp 

exactly the correction mechanism at work. Figure 13 does that job. 



Bultez and Seghers                                               Journal of Economic Analysis 4(2) 91-155 

133 

 

 

Figure 13. Statistical redressing of sample records into representative KPIs. 

 

This mapping shows that 

• All of the 62 poststratified KPIs, without exception, result from significant upward adjustments: all of the 31 

purple dots (outbound-KPIs) and 31 orange squares (inbound-KPIs) stand well above the 45°-line. 

• These two plots follow roughly the same logarithmic trend: the higher the performance, the nearer the 

inbound logistics ratings get to the outbound ones, the less drastic the rectification of the unweighted 

estimates. Indeed, top operators’ achievements are more uniform. 

The scale and direction of the poststratification effects are due to the following facts: 

(1) The minimum subsample size constraints, imposed by CEN, lead to test disproportionally more the small-

volume routes, which happen to score very low on the quality-of-service.  

(2) Two franking modes (𝐹𝑘: metered, prepaid) and one induction place (𝑃𝑙: pickup), characteristics of business 

mail27, which facilitate envelope handling, are undertested because market research contractors find it 

difficult to recruit and manage business panelists (company employees). 

 
27 Note that metering is not the franking mode exclusively reserved for business customers because in some post-offices, envelopes 

inducted over the counters are franked by the staff via metering machines instead of affixing stamps. 
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6.4. Towards more operational diagnoses 

        Beware not to be fooled by the big picture that emerges from Figure 12 and Table 13: the relatively 

satisfactory, and fairly accurate, overall score: 

�̂�(𝑬𝒖𝟐𝑬𝒖, 𝟓) = 𝟖𝟐. 𝟑𝟗𝟓%{
−𝟏. 𝟕𝟕𝟗 %  (from:𝑃0.5%

𝐸𝑢2𝐸𝑢,5)

+𝟏. 𝟔𝟐𝟒% (from:𝑁𝐶𝐼99.5%
𝐸𝑢2𝐸𝑢,5)

 , with 99% confidence, 

hides quite disparate realities. Figure 14 proves that, for many countries, achievements at both ends are far from 

equal. 

 

Figure 14. Relationship between outbound and inbound punctuality, for 𝐶𝑜 ≡ 𝐶𝑑. 

First of all, the estimates of the in-time delivery probabilities looked at from the outbound (i.e., 𝐶𝑜2𝐸𝑢) need 

be differentiated from those examined from the inbound-side (i.e. the 𝐸𝑢2𝐶𝑑-ones). So, it's vital to ponder both 

perspectives! Secondly, the scatterplot coupling these two facets of the operations in the 31 countries is funnel-

shaped: its dispersion narrows down progressively from the bottom-left up to the top-right. Criteria values get 

closer and closer to one another as the chances of successful delivery within the deadline improve. This is consistent 

with the convergence observed in Figure 13. Posts participating in operations for which the gap is wide (e.g., those 

pointed by red dots) learn a lot just by internally benchmarking their outbound- against their inbound-processes 

and by reviewing their chaining. Of course, they may benefit even more from winners as long as they are ready to 

share their experience, which IPC encourages and facilitates through various platforms of exchanges, its main raison 

d’être. 
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    Figure 15 further documents the variance lying under the rather narrow, and high, estimate-bracket of the 

overall global 𝐸𝑢2𝐸𝑢 -KPI. Only the vertical axis is graduated, as the abscissas are meaningless. It displays 

confidence intervals, in ascending order of SWB-weighted mean predicted probability. Limits of these fences are 

conservative:  

MIN L-99% = 𝒎𝒊𝒏{𝑷𝟎.𝟓%
𝑶𝟐𝑫,𝟓, 𝑵𝑪𝑰𝟎.𝟓%

𝑶𝟐𝑫,𝟓} and  MAX U-99% = 𝒎𝒂𝒙{𝑷𝟗𝟗.𝟓%
𝑶𝟐𝑫,𝟓,𝑵𝑪𝑰𝟗𝟗.𝟓%

𝑶𝟐𝑫,𝟓}. 

 

 

Figure 15.a Point-estimates and 99 -confidence bounds of probabilities of 𝐶𝑜2𝐸𝑢 delivery within 5 days. 

Although the amplitude of their scaling is such that they may look symmetric they are not because part of the 

uncertainty comes from the weighting schemes (cf. 3.4, here above). Most striking are the disparities between 

countries, which for business confidentiality’s sake cannot be singled out. Indeed, there is a long way 

• from the great depths: 

{
Figure 𝟏𝟓. 𝐚: [36.26% − 5.89% =  𝟑𝟎. 𝟑𝟕%] < �̂�(𝑪𝒐𝟐𝑬𝒖,𝟓) =  𝟑𝟔. 𝟐𝟔% < [36.26% + 6.06% = 𝟒𝟐. 𝟑𝟐%]

Figure 𝟏𝟓.𝐛: [25.35% −  5.56% = 𝟏𝟗. 𝟕𝟗%] < �̂�(𝑬𝒖𝟐𝑪𝒅, 𝟓) =  𝟐𝟓. 𝟑𝟓% < [25.35% + 6.12% = 𝟑𝟏. 𝟒𝟕%]
 

• up to the high peaks: 

{
Figure 𝟏𝟓. 𝐚: [96.14% − 1.64% = 𝟗𝟒. 𝟓𝟎%] < �̂�(𝑪𝒐𝟐𝑬𝒖, 𝟓) = 𝟗𝟔. 𝟏𝟒% < [96.14% + 1.32% = 𝟗𝟕. 𝟒𝟔%]

Figure 𝟏𝟓.𝐛: [96.82% − 1.24% = 𝟗𝟓. 𝟓𝟖%] < �̂�(𝑬𝒖𝟐𝑪𝒅, 𝟓) = 𝟗𝟔. 𝟖𝟐% < [96.82% + 1.05% = 𝟗𝟕. 𝟖𝟕%]
. 

Not too unexpectedly, their widths almost match the uncertainty about the outcome of the logistic process reflected 

by the probability of in-time delivery value: the closer it is to 0.5, the wider the confidence interval. 
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Figure 15.b Point-estimates and 99 -confidence bounds of probabilities of 𝐸𝑢2𝐶𝑑 delivery within 5 days. 

6.5. Possibility to reduce the bootstrapping task 

For computational efficiency, one should minimize the number of bootstrapped samples needed to infer 

dependable confidence intervals. 𝓑 = 10,000 proved to be sufficient … But wouldn’t 2,000 , or even less, be 

enough? To answer this pragmatic but critical, question, the sensitivity of the estimates of the confidence-interval 

limits (𝐶𝐼𝐿𝑠) to lowering 𝓑 should be tested. Their robustness can efficiently be assessed by probing the values 

arrived at when they are applied to a subset, 𝓼 of size: 𝓫 = |𝓼| < 𝓑, randomly selected without replacement from 

the entire set comprised of those derived from the 𝓑 bootstrapped samples. The accuracy of the estimates of the 

𝐶𝐼𝐿𝑠, reviewed KPI per KPI, can then be measured by the ratios of each of these estimates inferred from such a 

subset of 𝓫 samples: 𝐶𝐼�̂�(𝓼|𝓫), to that derived from the whole set of 𝓑 bootstrapped samples: 𝐶𝐼�̂�(𝓑):  

𝕣𝓈|𝓫(𝐶𝐼𝐿)  =
𝐶𝐼�̂�(𝓼|𝓫)

𝐶𝐼�̂�(𝓑)
 for 𝐶𝐼𝐿 ∈ {𝑃0.5%

𝑂2𝐷,5, 𝑃99.5%
𝑂2𝐷,5, 𝑃2.5%

𝑂2𝐷,5, 𝑃97.5%
𝑂2𝐷,5, 𝑁𝐶𝐼0.5%

𝑂2𝐷,5, 𝑁𝐶𝐼99.5%
𝑂2𝐷,5, 𝑁𝐶𝐼2.5%

𝑂2𝐷,5, 𝑁𝐶𝐼97.5%
𝑂2𝐷,5}, 

𝓼 ∈ {1, 2,… , 1 000} and 𝓫 ∈ {100, 200, 300, 400, 500, 600, 700, 800, 900, 1000}. 

Of course, to learn meaningful lessons from such indicators, many different subsets 𝓼 of size: 𝓫 need to be 

drawn, corresponding ratio values be calculated and the distribution of these values analyzed. In fact, the more 

concentrated this distribution turns out to be around 1, the more reliable the estimate of the 𝐶𝐼𝐿 is. Hereafter, we 

base our diagnosis on 1,000 subsamples of estimates per 𝐶𝐼𝐿 and per KPI. The scope of this investigation was 

restrained to three KPIs: 𝐸𝑢2𝐸𝑢, 𝐶𝑜2𝐸𝑢 for a single 𝐶𝑜 origin country and 𝐸𝑢2𝐶𝑑 for just one 𝐶𝑑 destination 

country. We picked the 𝐶𝑜 (𝐶𝑑) country exhibiting the most uncertain level of outbound (inbound) performance: 

i.e., the one evincing the largest error margins in Figure 15.a (15.b), whose KPI-estimates are most imprecise. 
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Figures 16.a and 16.b sum up, for the Eu2Eu-KPI, the distributions – one per subset-size 𝓫 – of the 1,000 

𝕣𝓈|𝓫 ratio-values relevant to the 99%-confidence lower limits derived from percentiles and studentized statistics, 

respectively. Analogously, Figures 17.a and 17.b sum up the distributions – one per subset-size 𝓫 – of the 1,000 

𝕣𝓈|𝓫 ratio-values relevant to the 99%-confidence upper limits of the Eu2Eu-KPI derived from percentiles and 

studentized stats, respectively. 

 

 

Figure 16.a Distributions of 1,000 values of the ratio related to:  𝐶𝐼𝐿 = 𝑃0.5%
𝐸𝑢2𝐸𝑢,5. 

 

Figure 16.b Distributions of values of the ratio related to:  𝐶𝐼𝐿 = 𝑁𝐶𝐼0.5%
𝐸𝑢2𝐸𝑢,5 . 
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Figure 17.a Distributions of values of the ratio related to:  𝐶𝐼𝐿 = 𝑃99.5%
𝐸𝑢2𝐸𝑢,5. 

 

Figure 17.b Distributions of values of the ratio related to:  𝐶𝐼𝐿 = 𝑁𝐶𝐼99.5%
𝐸𝑢2𝐸𝑢,5 . 

All four Figures, 16.a to 17.b, have been identically scaled to facilitate comparisons. These box-plotted 

histograms evince the same pattern: 

(a) Their means and medians hardly depart from 1. 

(b) As expected, the larger 𝓫 is, the smaller their dispersion. 

(c) Yet, ratio distributions of percentile-based CILs are less concentrated and more asymmetric than those of 

the studentized ones and more markedly so the lower 𝓫 is. 
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As similar patterns are observed for the 3 KPIs and all of the 8 CILs, we don’t include the other 22 (6+ 2x8) 

graphs of paralleled boxplots28. Rather, to provide a helicopter and comprehensive view on the sensitivity of CIL 

estimates to the bootstrapping rate (𝓫), we plotted the KPI-specific links between on the one hand, the ranges of 

the ratio-values: 

Range of 𝕣𝓼|𝓫(𝐶𝐼𝐿) = [max
𝓼
{ 𝕣𝓼|𝓫(𝐶𝐼𝐿)} − min

𝓼
{ 𝕣𝓼|𝓫(𝐶𝐼𝐿)}], 

and on the other, the bootstrapping rate. These synthetic graphs are displayed in Figures 18.a to 18.c. (note that 

the scale bounds of the vertical axis of Figure 18.a are more than ten times inferior to those of Figures 18.b and 

18.c). All three Figures consistently confirm observations (a) through (c) above. In addition, they establish the 

ranking of the 𝐶𝐼𝐿 estimates in increasing order of accuracy: 

𝑃0.5%
𝑂2𝐷,5 ≺ 𝑃99.5%

𝑂2𝐷,5 ≺ 𝑃2.5%
𝑂2𝐷,5 ≺ 𝑃97.5%

𝑂2𝐷,5 ≺ 𝑁𝐶𝐼0.5%
𝑂2𝐷,5 ≺ 𝑁𝐶𝐼99.5%

𝑂2𝐷,5 ≺ 𝑁𝐶𝐼2.5%
𝑂2𝐷,5 ≺ 𝑁𝐶𝐼97.5%

𝑂2𝐷,5. 

They also show that the precision of all KPI estimates had better be assessed by the studentized 𝐶𝐼𝐿𝑠:  

[𝑁𝐶𝐼𝛼 2⁄
𝑂2𝐷,𝕥 , 𝑁𝐶𝐼[1−(𝛼 2⁄ )]

𝑂2𝐷,𝕥  ], 

than by the percentiles of their empirical distribution. It should be noted, however, that the validity of the results of 

this second stage – which involves nested inner subsampling without replacement from the finite population of 

10,000 outer bootstrap estimates, performed here – depends heavily on the representativeness of these first-stage 

bootstrap estimates, which we believe we have ascertained in 6.2. 

 

 

Figure 18.a Ranges of values of the 𝕣𝓈|𝓫(𝐶𝐼𝐿)-ratios for Eu2Eu-KPI, as a function of 𝓫. 

 
28 This benchmarking approach has been implemented by means of two complementary SAS codes, copies of which can be obtained 
by contacting the first author, who can also deliver the full set of 24 (3x8) graphs upon requests. 
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Figure 18.b Ranges of values of the 𝕣𝓈|𝓫(𝐶𝐼𝐿)-ratios for Co2Eu-KPI, as a function of 𝓫. 

 

Figure 18.c Ranges of values of the 𝕣𝓈|𝓫(𝐶𝐼𝐿)-ratios for Eu2Cd-KPI, as a function of 𝓫. 

The marked trends towards the horizontal of the four lower curves, highlighted by Figures 18.a to 18.c, reveal 

that to evaluate the precision of the 𝐶𝐼𝐿 estimates of the overall Eu2Eu and Co2Eu and Eu2Cd KPIs, 

• at the 95% confidence level (the two lowest curves), 600 bootstrap resamples are sufficient,  

• at the 99% confidence level (the 3rd and 4th curves from bottom), 1000 bootstrap resamples are recommended. 
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7. Conclusions 

 

The integrative methodology finetuned in this article is implementable not only in the delivery services’ sector 

but to many other cases of failures to fully cover stratified universes, such as for election polls and market-research 

studies. In fact, it can be usefully adapted in all instances where the number of classification criteria of the 

population is large but gets practically restricted to no more than a few (most often, age, gender and social class), 

while they could include additional ones more directly germane to the survey’s purpose (e.g., behavioural factors 

such as political orientation, purchasing power, equipment, …), yet are ignored because of lack of information on 

strata allocation. 

Thus, given its applicability potential, the approach fostered here deserves to be validated. Benchmarking it 

against alternatives is enlightening: 

-  Alternative 1: Strictly stick to the available disproportionate sample, renouncing any adjustment that could 

restore proportionality. Such a last resort solution can only lead to biased values, badly so for the Posts: Figure 13 

has illustrated how underestimated probabilities of in-time delivery are by the corresponding unredressed 

proportions. 

-  Alternative 2: Prune the number of mail characteristics to the most discriminant ones and pool their less 

differentiating modes, as much as possible, to hopefully cut down the number of strata to make sure all are 

sufficiently sampled. In this respect, CEN prescribes to take into account “only those … that prove to be discriminant” 

(2020, p. 20): i.e., confirmed so by “quick-check of significance” (2020, § G.1.2.2, pp. 69-70). To do so, CEN advises 

to run 𝑡-tests of pairwise differences between means of “transit times” of items differentiated by two of the modes 

of the single characteristic whose effect is analysed independently from others29, and to consider that this difference 

is significantly discriminant only if the 𝑝-value associated with the 𝑡-stat exceeds the two-tail sacrosanct 5% 𝛼-

threshold. Many application-oriented statisticians from all domains have refuted this blind selection process30 

because it is likely to induce conclusions of insignificance of differences which may be practically meaningful, just 

because of the imprecision of estimates: e.g., Bultez et al. (2022) named “dichotomania” such overreliance on the 

mechanic benchmarking of the 𝑝 -value against the 𝛼 -threshold 31 . Bultez and Herrmann (2025) discussed 

examples of such a tendency. This is why paragraphs 5.3.1-5.3.2, above, rationalize the chosen option of neither 

eliminating any of the potential predictors, nor grouping modes. 

7.1. Main limitations 

7.1.1. Unknown extrapolability 

The real test of the approach should be to assess the predictive power of the model, which is impossible when 

many strata are not surveyed or are barely sampled because then there is no reliable counterfactual evidence. As 

surrogates, Monte Carlo experiments could be programmed, but the results of these computer-lab tests would be 

biased in favor of the model which would drive the simulation. Thus, the model external validity cannot be 

established. 

 

 

 
29 These one-factor-two-mode-at-a-time tests are biased because ignored effects of the omitted covariates get picked up by the variable 
focused on, to the extent of the collinearity between this and the others. 
30 Hulbert et al.′s (2019, pp. 354-355) historical review of the anti-threshold movement starts as early as in 1960. 
31 Moreover, confusions arise because 𝑝 is often misinterpreted as the probability of the null hypothesis. Worse, 1 − 𝑝 is mistaken 
for the “level of significance”, as CEN believes (op. cit., p. 69: comment on top of Table G.1). 
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7.1.2. Omitted covariates 

No matter how comprehensive a model may be, it will always remain incomplete because its very purpose is 

to simplify a complex reality. Here, factors such as: 

•  seasonality: extreme peaks in the volumes of mail exchanged during certain periods of the year (such as 

Christmas/Nex Year) are likely to affect logistics performance, 

•  interactions: certain combinations of mailings’ features - e.g., metered-picked up, may be more easily 

handled in certain countries’ outbound-facilities - might have to be incorporated … But the number of parameters 

is already very large. Adding more would cause computational issues: prohibitive running time, non-convergence, 

lack of memory. 

Therefore, the introductory part of section 4 invoked Zellner’s reinterpretation of the KISS principle. 

 

7.1.3. Bootstrapping techniques 

 The basic bootstrapping with replacement that we resorted to in order to derive confidence intervals for KPI 

estimates (Table 11) is extremely CPU-time consuming. Alternative, more advanced methods may be less 

computationally intensive, but reviewing and testing them falls outside our scope. 

 

7.2. Future research 

 

Addressing the shortcomings identified in 7.1 would open up new investigation tracks. Yet, other paths might 

be worth exploring. 

7.2.1. Contrasting in-time versus late 

The proportional odds hypothesis upon which the multinomial cumulative regression rests is questionable 

(refer back to § 4.2.3), hence, separate binomial models, one per deadline - contrasting various “in time” versus “late” 

events -, could be parameterized as follows: 

• fast if 𝕥 ≤ 2 versus low speed if 𝕥 ≥ 3, 

• rapid if 𝕥 ≤ 3 versus slow if 𝕥 ≥ 4, the distinction IPC has picked to run stepwise multivariate  

    discriminant analyses to simplify the stratification (Alternative 2, alluded to here above), 

• reliable if 𝕥 ≤ 5 versus undependable if 𝕥 ≥ 6. 

Which combination of such variants would be best and to what extent would it outclass the multinomial cumulative 

remain open questions. 

7.2.2. Model blending real-world and test data 

UNEXTM-CEN perspective is holistic in that it covers the entire shipment and delivery process - for the full end-

to-end walk of a test-letter all the way through the postal pipeline - and is only interested in measuring the total 

transit time. Though, systematic RFID tracking makes it possible to break down each test item's journey into its 

outbound stretch in the country of origin (leg 1), its cross-border transport (leg 2), and its inbound stretch in the 

country of destination (leg 3). Moreover, for real-time control of operations, all real mail flows get scanned at the 

sending Post’s international departure center in the country of origin and at the receiving Post’s international 

arrival hub in the country of destination. Therefore, the representativeness of the test-items’ course through leg 2 

could be truly evaluated. Also, more importantly, an integrative model built to handle both real-world and test data 

would render sampling intercountry logistical links unnecessary. Then, testing would be confined to the domestic 

legs 1 and 3 treated as independent stages. In turn, this would simplify the stratification design and sampling plan. 
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7.2.3. Towards a truly predictive model 

While the model currently facilitates post-factum analytics to guide remedial actions, a more consolidative 

version of it - exploiting both sources of data - could flag up in-process items at risk and Posts could take specific 

measures so that the much-dreaded delays forecasted could be prevented. 

7.3. Originality 

Despite its shortcomings, our paper is the first to tackle 

• the uncertainty about weighting schemes, which are only partially known: i.e., marginally, per 

characteristic, and not jointly, 

• a system’s quantitative response - i.e., delivery time, by nature a ratio-scaled measurement32  - as a 

categorical ordinal measure and consequently, better appraise what difference a day makes. 
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Appendix 

A.1 Program designed to calculate the bounds on point-estimates of country-to-country KPIs: cf. subsection 3.4. 

 

/* I. Input: real mail weights of factors' modes, standard weighting schemes, predicted probabilities of delivery by 𝕥 */ 
/* I.1. Real mail weights of factors' modes: 𝛀𝒎(𝒇|𝑪)  →  Omega_mf   */ 
DATA RMW; INFILE 'C:\... … \Pooled_RMW.csv' DLM="," DSD;   
     INPUT Factor $ Mode $ Country $ Omega_mf; IF Omega_mf=0 THEN DELETE; 
RUN; 
/* I.2. Standard Weighting Schemes: 𝜔𝑠|𝐶𝑜2𝐶𝑑  →  SWB_s */   
DATA SWB; INFILE 'C:\... … \Weighting_schemes.csv' DLM="," DSD; 
     INPUT Fk $ Pl $ Sw $ Uo $ Wd $ Co $ Ud $ Cd $ SWB_s Co2Cd $; 
RUN;  
PROC SORT DATA=SWB; BY Co2Cd Fk Pl Sw Ud Uo Wd; RUN; 
/* I.3. Counting and numbering of Co2Cd-paths */ 
PROC SORT DATA=SWB NODUPKEYS OUT=Paths; BY Co2Cd; RUN; 
DATA Paths; SET Paths; Path=_N_; KEEP Co2Cd Path; RUN; 
DATA _NULL_; SET Paths; END=LAST; IF LAST THEN CALL SYMPUT("N_paths ",LEFT(_N_)); RUN; 
DATA SWB; MERGE Paths SWB; BY Co2Cd; RUN; 

 
32 On measurement scales, see: Stevens (1946). 
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/* I.4. Strata-specific predicted probabilities of delivery within 𝕥-days: Π̂𝑠,𝕥  → SPD_by_T  */  
DATA Performance_D5; INFILE 'C:\... … \ Predictions_t_5.csv' DLM="," DSD; 
     INPUT Co $ Cd $ Uo $ Ud $ Sw $ Fk $ Pl $ W_Eu2Eu Wd $ SPD_by_T; 
     /* Weighting of the Π̂𝑠,𝕥: 𝜔𝑠|𝑜2𝑑

∗∗  →  W_Eu2Eu */ W_Perf = SPD_by_T*W_Eu2Eu; 
RUN; 
PROC SORT DATA =Performance_D5; BY Co Cd Fk Pl Sw Ud Uo Wd; RUN; 
/* I.5. Benchmark: Overall SWB Eu2Eu predicted probability of delivery by 𝕥:  𝛱(𝐸𝑢2𝐸𝑢, 𝕥) →Eu2Eu_PD_by_T */  
PROC MEANS DATA =Performance_D5 NOPRINT; VAR W_Perf; OUTPUT OUT =KPI_5 SUM=Eu2Eu_PD_by_T; RUN; 
 

/* II. Routine optimizing the point-estimates of the in-time delivery probabilities in-time delivery: 

�̂̂�(𝑪𝒐𝟐𝑪𝒅, 𝕥) and �̂̂�(𝐶𝑜2𝐶𝑑, 𝕥) defined in Table 4, consistent with real weights of factors' modes. 

Concomitant determination of weighting vectors maximizing/minimizing those point-estimates: 𝓦𝑪𝒐𝟐𝑪𝒅, 𝓦𝑪𝒐𝟐𝑪𝒅  
Called by the %Execution-macro, see below: V */                              
%MACRO Optimization;    
/* The OPTMODEL language enables one to build and solve optimization models: part of the SAS/OR software */  
        PROC OPTMODEL;  
        /* II.1. Declaration of sets of strings, and matrix & vectors of parameters, 
          necessary for the specification of the conditional weights of factors’ modes */       
              SET Strata; 
           SET <str> mfs; /* 𝒎(𝒇|𝑪)  → mfs: factors' modes */   
        /* M_mfs_id: matrix of identifiers factors' modes charactering strata of items */  
              NUMBER M_mfs_id {Strata,mfs};  
              NUMBER Mf_W {mfs}; /* Mf_W: vector of modes' weights */  
        /* Vector of strata-specific predicted probabilities of intime delivery: Π̂𝑠,𝕥 → pi_s_t */  
        NUMBER pi_s_t {Strata};  
        /* II.2. Inputs of constants through statements of the form:   
          "READ DATA SAS-data-set INTO set-name =[key-columns]"  
    Such a statement reads data from a SAS-datasets into parameters' matrix and vectors' locations.  
    Arguments are:  
         - SAS-data-set specifies the input data set name; 
         - set-name: set vector in which to save the set of observations read from the input data set;  
         - key-columns: provide the index values for array: destinations,  
         - columns: specify the data values to read and the destination locations.  
        /* II.2.1. Importing names of binary variables identifying the factors' modes from the file  
          specified just after the DATA-keyword (i.e., I_MF), to put them into a column-vector labelled:  
          mfs, so as to pick the relevant binary indicators, when needed. Cf. V.5, re below */ 
              READ DATA I_MF INTO mfs=[I_MF]; 
        /* II.2.2. Importing the binary indicators of the modes of the fixed factors characterizing strata  
       and placing them into a matrix labelled: M_Mfs_id, strata (rows) X modes (columns) 
    cf. V.2, here below*/ 
              READ DATA mf_id INTO Strata=[Stratum] {m in mfs} <M_mfs_id[Stratum,m]=col(m)>; 
        /* II.2.3. Importing the values of the strata-specific predicted probabilities of in-time delivery 
          cf. V.3., here below */ 
             READ DATA KPI_Co2Cd INTO Strata=[stratum] pi_s_t = SPD_by_T; 
        /* II.2.4. Importing of the real mail weights of factors' modes   
    Cf. V.4, here below */ 
             READ DATA RMW_Co2Cd INTO mfs=[I_MF] Mf_W=Omega_mf; 
        /* II.3. Declaration of the unknown variables: i.e., the weights to be allocated to the strata of items                   
          sent from each Co to each Cd. Setting of their lower limit: all must be non-negative, i.e., >=0.  
    N.B. Their upper limit (i.e., <=1) is naturally satisfied by the sum-constraint, defined in II.4 */     
             VAR w{1..&N_strata} >=0; /* 𝔀𝒔|𝑪𝒐𝟐𝑪𝒅 → w  */ 
       /* II.4. Specification of the sum-constraint: strata weights must add up to unity */ 
             CONSTRAINT Overall_consistency: SUM{s in Strata} w[s]=1; /* ∑ 𝔀𝒔|𝑪𝒐𝟐𝑪𝒅𝒔∈𝑺(𝑪𝒐𝟐𝑪𝒅) = 𝟏 */ 
        /* II.5. Specification of the constraints limiting the search to weighting schemes perfectly  
          consistent with the conditional real mail modes’ weights:  
          ∑ 𝔀𝒔|𝑪𝒐𝟐𝑪𝒅 × 𝑰𝒎(𝒇|𝑪)

𝒔|𝑪𝒐𝟐𝑪𝒅
𝒔∈𝑺(𝑪𝒐𝟐𝑪𝒅) = 𝛀𝒎(𝒇|𝑪)  */ 

             CONSTRAINT RMW_Mf {m in mfs}:  ( SUM{s in strata} w[s]*M_mfs_id[s,m] ) = Mf_W[m]; 
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        /* II.6. Definition of the OBJECTIVE: i.e., either MINimizing or MAXimizing the Co2Cd-KPI :            
          �̂̂�(𝑪𝒐𝟐𝑪𝒅, 𝕥| 𝓦𝑪𝒐𝟐𝑪𝒅) = ∑ 𝔀𝒔|𝑪𝒐𝟐𝑪𝒅 × �̂�𝒔,𝕥𝒔∈𝑺(𝑪𝒐𝟐𝑪𝒅)  →  PI_Co2Cd */ 
             &OBJECTIVE PI_Co2Cd = SUM{s in Strata} (pi_s_t[s]*w[s]);  
          /* Specifies that the solution is to be found by the linear programming algorithm */ 
             SOLVE WITH LP;  
        /* II.7. Saving the summary of the essential outcomes: the value of the OBJECTIVE at the optimum*/ 
             ODS OUTPUT ProblemSummary=Problem SolutionSummary=Optimum; 
        /* II.8. EXPAND makes the constraints & objective function explicit, for checking purpose */ 
             EXPAND; 
        /* II.9. Saving optimal weights: either  𝓦𝑪𝒐𝟐𝑪𝒅, or  𝓦𝑪𝒐𝟐𝑪𝒅 */ 
             CREATE DATA W_PI_s_t FROM [Stratum] w pi_s_t; 
         QUIT; 
%MEND Optimization; 
 
/* III. Macro editing the results' files, called by the %Pooling-macro: cf. § IV */ 
%MACRO Edition; 
    DATA Status; LENGTH Status_&OBJECTIVE $22.; SET Optimum; 
      IF Label1="Solution Status" THEN Status_&OBJECTIVE=cValue1; 
      IF Label1="Solution Status"; KEEP Status_&OBJECTIVE; 
    RUN; 
    DATA Opt_value; FORMAT Objective_&OBJECTIVE BEST14.; SET Optimum; 
      IF Label1="Objective Value" THEN Objective_&OBJECTIVE=cValue1; 
      IF Label1="Objective Value"; KEEP Objective_&OBJECTIVE; 
    RUN; 
    DATA Optimum_&OBJECTIVE; MERGE Status Opt_value; Co="&Co_path";Cd="&Cd_path"; RUN; 
    DATA W_PI_s_t_&OBJECTIVE; SET W_PI_s_t; w_&OBJECTIVE=w; 
      w_pi_s_t_&OBJECTIVE=w*pi_s_t; Co="&Co_path";Cd="&Cd_path"; DROP w; 
    RUN; 
%MEND Edition; 
 
/* IV. Macro pooling Co2Cd optimal weighting schemes */ 
%MACRO Pooling; 
         DATA Optima_Co2Cd; MERGE Optimum_MIN Optimum_MAX; BY Co Cd; RUN; 
         DATA W_PI_s_t_Co2Cd; MERGE SWB_Co2Cd W_PI_s_t_MIN W_PI_s_t_MAX; RUN; 
          IF &p=1  THEN  DO;  Edition; 
                               DATA Optima_ALL; SET Optima_Co2Cd; RUN;  
                               DATA W_PI_s_t_ALL; SET W_PI_s_t_Co2Cd; RUN; 
                 END; 
          ELSE  IF &p>1  THEN  DO;  Edition;  
                                     DATA Optima_ALL; SET Optima_ALL Optima_Co2Cd; RUN; 
                         DATA W_PI_s_t_ALL; SET W_PI_s_t_ALL W_PI_s_t_Co2Cd; RUN; 
                        END; 
%MEND Pooling; 
/* V. Macro governing the processing of the calculations of all vectors of weights  
  minimizing/maximizing the point-estimates of the probabilities of in-time delivery, per Co2Cd-path */ 
%MACRO Looping_Co2Cd; 
      DO p = 1  TO &N_paths;  
      /* V.1. Selection of the strata standard weights specific to the 𝑝𝑡ℎ Co2Cd-path  
        and ranking of these according to the factors determining the stratification */ 
          DATA SWB_Co2Cd; SET SWB; IF Path=&p; RUN; 
          PROC SORT DATA=SWB_Co2Cd; BY Fk Pl Sw Ud Uo Wd; RUN; 
          DATA SWB_Co2Cd; SET SWB_Co2Cd; Stratum=_N_; DROP Co2Cd Path; RUN; 
      /* V.2. Generation of the binary indicators of whether, or not, each stratum is characterized by each of the           
        factors' modes: matrix, to be imported in the OPTMODEL-procedure, cf. II.2.2, here above */  
          PROC GLMMOD DATA=SWB_Co2Cd OUTDESIGN=mf_id PREFIX=I_MF NOPRINT; 
               CLASS Fk Pl Sw Ud Uo Wd; 
               MODEL Stratum = Fk Pl Sw Ud Uo Wd / NOINT;  
          RUN; 
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      /* V.3. Selection of the strata-specific predicted probabilities of in-time delivery, for items sent from Co to Cd,                          
        to be imported in the OPTMODEL-procedure, cf. II.2.3., here above */   
          DATA _NULL_; SET SWB_Co2Cd END=LAST; 
               IF LAST THEN DO; CALL SYMPUT("N_strata",LEFT(_N_)); 
                               CALL SYMPUT("Co_path",Co); CALL SYMPUT("Cd_path",Cd);  
                            END; 
          RUN; 
          DATA KPI_Co2Cd; SET Performance_D5; IF (Co="&Co_path" AND Cd="&Cd_path"); RUN; 
          PROC SORT DATA=KPI_Co2Cd; BY Fk Pl Sw Ud Uo Wd; RUN; 
          DATA KPI_Co2Cd; SET KPI_Co2Cd; Stratum=_N_; KEEP Stratum SPD_by_T; RUN; 
      /* V.4. Selection of the real mail weights of factors' modes relevant to the 𝑝𝑡ℎ Co2Cd-path examined, 
     to be imported in the OPTMODEL-procedure, cf. II.2.4., here above */ 
          DATA RMW_Co2Cd; SET RMW;  
               IF (Country="&Co_path" AND Factor^="Ud") OR (Country="&Cd_path" AND Factor="Ud");  
          RUN; 
          PROC SORT DATA=RMW_Co2Cd; BY Factor Mode; RUN;       
          DATA _NULL_; SET RMW_Co2Cd END=Last; IF Last THEN CALL SYMPUT("N_modes",LEFT(_N_)); RUN; 
      /* V.5. Labelling factors' modes, consistent with that of their binary indicators (cf. § V.2, here above)     
      to be imported in the OPTMODEL-procedure: cf. II.2.1., here above */ 
          DATA I_MF(DROP=m); LENGTH I_MF $6.;  
               DO m=1 TO &N_modes;  
                  IF m<10 THEN I_MF = 'I_MF'||PUT(m,1.); ELSE I_MF = 'I_MF'||PUT(m,2.); OUTPUT; 
               END; 
          RUN; 
          DATA RMW_Co2Cd; MERGE I_MF RMW_Co2Cd; KEEP I_MF Omega_mf; RUN; 
      /* V.6. Definition of the objectives and execution of the optimization */  
           LET OBJECTIVE = MAX;  Optimization;  Edition;  LET OBJECTIVE = MIN;  Optimization;  Edition;          
       Pooling; 
    END; 
%MEND Looping_Co2Cd;  
 /* Execution of the just described MACRO-routine */ 
% Looping_Co2Cd;  
 

A.2 Program designed to fit the mixed 𝑴𝑪𝑳 model and to test gaps between response thresholds: cf. 5.4. 
 
/* I. Input of test-items' records and categorization of delivery times into performance classes */ 
DATA EtE_records; LENGTH Performance $5.; INFILE 'C:\... … \EtE_records.csv' DLM="," DSD; 
     /* Response: Delivery_time.  Predictors: labels defined in Table 1 (fixed factors: 𝑓 ∈ 𝓕).                                   
       Zo and Zd denote logistic areas of origin/destination, transformed into dummies: 
       𝑍𝑖,ℴ

𝑂  and 𝑍𝑖,𝒹
𝐷  in (5), through the CLASS-statement in the PROC GLIMMIX (cf. here below: II.2) */                      

     INPUT Delivery_time Co $ Cd $ Uo $ Ud $ Wd $ Sw $ Fk $ Pl $ Zo $ Zd $; 
     /* Categorization into ordered performance classes */ 
     IF Delivery_time=1 THEN Performance = "T_1"; /* 𝕥 = 1 */ 
       … … … … … … … … … … … … … … … … … … … … … … … … … … … …  
            ELSE IF Delivery_time=9 THEN Performance = "T_9"; /* 𝕥 = 9 */ 
               ELSE IF Delivery_time=10 THEN Performance = "T_X"; /* 𝕥 = 10 */ 
                      ELSE IF Delivery_time>10 THEN Performance = "T_X+"; /* 𝕥 = �̅� + 1 ≡ 𝕃 */ 
RUN; 
/* II. Mixed Multinomial Cumulative Logistic (MCL) regression */      
    /* II.1. Definition of nominal factors to be entered as predictors in the model and choice of their base-levels 
          i.e., arbitrarily here: 𝐴𝑇, Austria, for both countries of origin and destination, 
          and 𝑅𝑡, rural towns, for degrees of urbanization of outbound and inbound areas */ 
         /* Geographical features */  
               LET Geo = Co  Cd  Uo  Ud;  
               LET Geo_Ref = Co(REF='AT')  Cd(REF='AT')  Uo(REF='Rt')  Ud(REF='Rt');  
        /* Mail characteristics: 𝐴𝑑 excluded because the addressing mode has become non discriminant */ 
              LET MCs = Wd  Sw  Fk  Pl;   
              LET MCs_ref= Wd(REF='6_Sa')  Sw(REF='C6_20g')  Fk(REF='St')  Pl(REF='Pu'); 
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    /* II.2. Procedure fitting Generalized Linear Mixed Models (GLIMMIX) */ 
         /* Estimation option: maximization of the likelihood using Laplace approximation method */ 
         PROC GLIMMIX DATA=EtE_records METHOD=LAPLACE ITDETAILS GRADIENT; 
               /* Declaration of fixed predictors and random components as classification indicators */ 

               /* Automatic coding into binary dummies: 𝑥𝑖,𝑚(𝑓)
𝑓

, 𝑍𝑖,ℴ
𝑂  and 𝑍𝑖,𝒹

𝐷  */ 

               CLASS  &Geo_Ref  &MCs_ref  Zo  Zd;  

              /* Model specification, according to equation (5),  
            - with the COVB-option to save the covariance matrix of the fixed-effects parameter estimates */ 

               MODEL Performance = &Geo &MCs /  
                                   LINK=Cumlogit DIST=Multinomial DDFM=BW SOLUTION COVB;    
              - including the random intercepts, encompassing the spatial heterogeneity in logistics */  
               RANDOM INTERCEPT / SUBJECT=Zo TYPE=VC; RANDOM INTERCEPT / SUBJECT=Zd TYPE=VC; 
             /* Combination of non-linear optimization options to ensure convergence  
                within a reasonable time limit */ 
            NLOPTIONS MAXITER=10000 MAXFUNC=10000 ABSFTOL=0.00001  
                           GCONV=0 ABSGCONV = 1e-18 FCONV=0 TECHNIQUE=NRRIDG; 
            /* CONTRAST-statements customizing hypothesis tests,  
              here designed to compare the standardized 𝜃𝕥|𝐵-thresholds defined by cf. (15. 𝑑) */  
              CONTRAST ‘ T_1 vs T_2'  Intercept   1  -1   0  0  0  0  0  0  0  0; 
              CONTRAST ‘ T_2 vs T_3'  Intercept   0   1  -1  0  0  0  0  0  0  0; 
              … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … 
              CONTRAST ‘ T_9  vs T_X' Intercept   0   0   0  0  0  0  0  0  1  -1; 
            /* Filing of standardized parameters' estimates differentiating fixed factors’ modes:  
              in (15. 𝑒) and of results of tests of global fixed effects */  
              ODS OUTPUT PARAMETERESTIMATES=Estimates TESTS3=Fix_eff;   
            /* Filing of (a) the estimated standardized variances in effects of random components in:              
              V_random_effects; (b) the matrix of estimated variances of, and covariances between, estimates of  
              the other parameters in: VCov; (c) and the output from tests of differences between the  
              standardized thresholds in: Diff_intercepts. */ 
              ODS OUTPUT COVPARMS=V_random_effects COVB=VCov CONTRASTS=Diff_intercepts; 
         RUN; 
        /* Excerpting estimates of standardized 𝜃𝕥|𝐵-thresholds from the file of parameters’ estimates */  
         DATA EST_Thresholds;SET Estimates;IF Effect="Intercept";KEEP Performance Estimate; RUN; 
       /* Excerpting estimated variances of, and covariances between, estimates of standardized thresholds,  
         from the entire VCov-matrix of parameters’ estimates */ 
         DATA VCov_Thresholds; SET VCov; IF Effect="Intercept"; DROP Effect &Geo &MCs Row; RUN;  
 
/* III. Routine calculating all statistics relevant to contrast estimates of successive 𝜃𝕥|𝐵-thresholds,  
     not provided by the execution of the CONTRASTS-statements: cf. § 5.4.2, Table 8 */   
   LET UT=10; /* Upper limit on delivery time: �̅�  */ 
  /* Programming of the tests of differences between the 𝜃𝕥|𝐵-thresholds’ estimates */     
  %MACRO Cut_points; 
           PROC IML; /* Use of the Interactive Matrix Language (IML) */ 
                /* Logging of thresholds’ estimates into a column-vector, named: V_est_thresh */  
                USE EST_Thresholds; READ ALL VAR _NUM_ INTO V_est_thresh;  
                Theta_est = − V_est_thresh[1:&UT];  
                /* Logging of compared thresholds’ names into column-vectors: Theta_t and Theta_tp1 */ 
                READ ALL VAR _CHAR_ INTO Parms;  Theta_t=Parms[1:&UT −1]; Theta_tp1=Parms[2:&UT]; 
                /* Naming of pairs of thresholds’ estimates */ 
                Theta_compared=Theta_t||Theta_tp1;  
                THETAs = {"THETA_t","THETA_tp1"}; 
                CREATE Pairs FROM Theta_compared [COLNAME=THETAs]; APPEND FROM Theta_compared;  
                USE VCov_Thresholds; 
                /* Logging of the estimated variances of, and covariances between, the estimates of  
                  the standardized thresholds into a matrix, named: M_vcov */ 
                READ ALL VAR _NUM_ INTO M_vcov; VCOV = M_vcov[1:&UT,1:&UT];               
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                /* Dimensioning and initialization of intermediate and final outputs vectors and matrix*/  
                Stderror=SHAPE(0, &UT−1,1); Dif=SHAPE(0,&UT−1,1); M_test=SHAPE(0,&UT−1,4); 
                /* Comparisons between thresholds’ estimates */  
                DO t=1 TO &UT−1; 
                   /* Differences between thresholds’ estimates */   
                Dif[t]=Theta_est[t]−Theta_est[t+1]; 
                /* Standard errors of differences between thresholds’ estimates */ 
                   Stderror[t]=(VCOV[t,t]+VCOV[t+1,t+1]−VCOV[t,t+1]−VCOV[t+1,t])**0.5; 
                END; 
                /* 𝑧-statistic and 𝑝-values assessing the significance of the differences */ 
                z_stat=Dif/Stderror; p_value=1−PROBNORM(ABS(z_stat));  
                /* Logging results of the tests of differences */ 
                M_test[,1]=Dif;M_test[,2]=Stderror; M_test[,3]=z_stat; M_test[,4]=p_value; 
                Labels={"Difference","StdError","z-Stat","p-Value"}; 
                CREATE Test_file FROM M_test [COLNAME=Labels]; APPEND FROM M_test; CLOSE Test_file;    
           QUIT;  
           DATA Thresholds_tests; MERGE Pairs Test_file; RUN; 
   %MEND Cut_points;  
   /* Execution of the just described MACRO-routine */   
  Cut_points; 
 

A.3 Program designed to fit the 𝑵𝑩 model and therefrom estimate in-time delivery probabilities: cf. § 4.1.1.  
 

/* I. Negative Binomial (𝑵𝑩) regression: statements similar to those programmed in: II.2. of annex A.2 */  
PROC GLIMMIX DATA=EtE_records METHOD=LAPLACE ITDETAILS GRADIENT; 
      CLASS &Geo_Ref  &MCs_ref  Zo Zd; 
      /* Response: ℕ𝑖 = 𝕋𝑖 − 1, labelled: N_count */ 
      MODEL N_count = &Countries &Zones &MCs / SOLUTION DDFM=BW DIST=NEGBIN LINK=LOG; 
     NLOPTIONS MAXITER=10000 MAXFUNC=10000 … TECHNIQUE=NRRIDG; /* cf. II.2. */ 
      /* Filing of the Marginal Linear Predictor: MLP= ln 𝜇𝑖 = −�̂�𝑖, cf. formula: (11). 
       The NOBLUP-option neutralizes the effects of random components */ 
      OUTPUT OUT= NB_Predictions PRED(NOBLUP)=MLP;  
      /* Filing of: 
        (a) parameters’ estimates, 
        (b) the outputs from the tests of the global effects of fixed factors: 
           𝐹-statistics in Table 7 → Tests3= Global_fixed_effects   
       (c) the CovParms-output includes the estimated variances of the random components 
           and of the overdispersion-parameter specific to the NB-distribution */  
       ODS OUTPUT ParameterEstimates=Param_est Tests3=Global_fixed_effects CovParms=CovParms;       
RUN; 
/* Saving �̂� (Phi) - called scale of the NB distribution - as a SAS macro variable */ 
DATA _NULL_; SET CovParms; IF CovParm = "Scale" THEN CALL SYMPUT("Phi", Estimate); RUN;    
     
/* II. Routine inferring strata-level predicted probabilities of  
  (a) on-time delivery: π̂𝑠,𝕥, labelled: PdinT(t) ; (b) and in-time (i.e., within deadline): Π̂𝑠,𝕥, labelled: PDbyT(t)  */  
%MACRO NB_Cpmf; 

  PROC SORT DATA=NB_Predictions NODUPKEYS;  BY &Geo &MCs;  RUN;  
          LET Phi_inverse =  SYSEVALF(1/&Phi);   

  DATA NBD_Probabilities; SET NB_Predictions; 
       ARRAY PDinT{10} PDinT_1-PDinT_10; ARRAY PDbyT{10} PDbyT_1-PDbyT_10;   
       Q = − MLP; Mu = EXP(− Q); p = 1/(1+ &Phi*Mu); 
       DO t = 1 TO 10; t_1 = t−1;  
          PDinT[t] = PDF('NEGBINOMIAL',t_1,p,&Phi_inverse);  /* π̂𝑠,𝕥 */ 
          PDbyT[t] = CDF('NEGBINOMIAL',t_1,p,&Phi_inverse);  /* Π̂𝑠,𝕥 */ 
      END;  
  RUN; 

%MEND NB_Cpmf; 
/* Execution of the just described MACRO-routine */ %NB_Cpmf; 
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A.4 Program designed to derive the distributions of the estimates of the aggregate KPIs: cf. 6.1.   

 
/* I. Key constants dimensioning the simulation run */     
/* I.1. Size of the parent sample: 𝑛 */  
      LET Sample_size=105889; 
/* I.2. Setting the number of bootstrap-samples to be generated by random resampling of the parent sampling */ 
      LET NBS=10000;  
/* II. Filing of postal outbound/inbound areas: from screening the data, which include Zo and Zd */ 
    𝑍.,ℴ

𝑂 ⟶ in: OUT_clusters ;  𝑍𝑖,𝑑
𝐷 ⟶ in: IN_clusters */ 

    PROC SORT NODUPKEYS DATA=EtE_records OUT=OUT_clusters;  BY Zo;  RUN; 
    DATA OUT_clusters;  SET OUT_clusters;  KEEP Zo;  RUN; 
    PROC SORT NODUPKEYS DATA =EtE_records OUT= IN_clusters;   BY Zd;  RUN; 
    DATA IN_clusters; SET IN_clusters;  KEEP Zd;  RUN; 

/* III. MACRO routine generating local random variations in outbound/outbound logistics: [𝜐ℴ/𝜎
𝑂 ]

(𝑏)
, [𝜐𝒹/𝜎

𝐷 ]
(𝑏)
 */ 

     %MACRO LRV;  
              /* Outbound, labelled: upsilon_o; standard-deviation estimate recovered in: IV.3, below */    

           DATA OUT_Clusters; SET OUT_Clusters;  

               upsilon_o = RAND('NORMAL', 0 , &STDV_OUT);  /*  [𝜐ℴ/𝜎
𝑂 ]

(𝑏)
~𝒩(0, 𝜍𝑂  𝜎⁄̂

(𝑏)
)   */ 

           RUN;            

           /* Inbound, labelled: upsilon_d; standard-deviation estimate recovered in: IV.3, below */ 

           DATA IN_Clusters; SET IN_Clusters;   

               upsilon_d=RAND('NORMAL', 0 , &STDV_IN);    /*  [𝜐𝒹/𝜎
𝐷 ]

(𝑏)
~𝒩(0, 𝜍𝐷  𝜎⁄̂

(𝑏)
)  */ 

           RUN; 

     %MEND LRV; 
/* IV. MACRO routine fitting the Multinomial Cumulative Logit model to a bootstrapped sample,  
     resulting from a random selection of data in the parent sample: cf. VII, here after */  
    %MACRO MCL_parametrization; 
     /* IV.1. Estimation procedure adapted from II.2. in annex A.2 */ 
       PROC GLIMMIX DATA=Sample METHOD=LAPLACE ITDETAILS GRADIENT; 
         CLASS &Geo_Ref &MCs_ref Zo Zd; 
         MODEL Performance = &Geo &MCs /  
                           DDFM=BW LINK=CUMLOGIT DIST=MULTINOMIAL SOLUTION; 
           RANDOM INTERCEPT / SUBJECT=Zo TYPE=VC;  RANDOM INTERCEPT / SUBJECT=Zd TYPE=VC; 
         NLOPTIONS MAXITER=10000 MAXFUNC=10000 ABSFTOL=0.00001  
                          GCONV=0 ABSGCONV=1e-18 FCONV=0 TECHNIQUE=NRRIDG; 
          ODS OUTPUT IterHistory=Iter_RAND ParameterEstimates=Estimates_RAND Tests3=Fix_eff_RAND;  
         ODS OUTPUT CovParms=V_random_effects ConvergenceStatus=Convergence;  
        /* Storing estimates whose values can next be recovered to produce predictions: cf. VI.1, here after */ 
         STORE SASUSER.MCL; 
       RUN; 
     /* IV.2. Message issued in case of divergence of the GLIMMIX-procedure */ 
       DATA _NULL_; SET Convergence; CALL SYMPUT('Divergence',Status);  RUN; 
      /* Issuing, in the debugging log, of a message about the conver-/diver-gence of the GLIMMIX-procedure */ 
        IF &Divergence=1  THEN  PUT Divergence;  ELSE  PUT Convergence;                 
      /* IV.3. Recovery of the estimates of random components’ standard deviations */ 
       DATA _NULL_; SET V_random_effects;  
           IF Subject="Zo" THEN CALL SYMPUT('V_Outbound',Estimate);  
         ELSE IF Subject="Zd" THEN CALL SYMPUT('V_Inbound',Estimate); 
       RUN; 
        LET STDV_OUT= SYSEVALF(&V_Outbound**0.5);  LET STDV_IN= SYSEVALF(&V_inbound**0.5); 
     /* IV.4. Call to the LRV-MACRO, commented in III, here above */  LRV;        
%MEND MCL_parametrization; 
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/* V. MACRO routine called by the Predictions-MACRO to finalize the estimation of the aggregate KPIs: 

 �̂̂�(𝑬𝒖_𝒔𝒕𝒓𝒆𝒂𝒎, 𝕥), �̂�(𝑬𝒖_𝒔𝒕𝒓𝒆𝒂𝒎, 𝕥), �̂̂�(𝑬𝒖_𝒔𝒕𝒓𝒆𝒂𝒎, 𝕥), for 𝐸𝑢_𝑠𝑡𝑟𝑒𝑎𝑚 ∈ {𝐶𝑜2𝐸𝑢, 𝐸𝑢2𝐶𝑑, 𝐸𝑢2𝐸𝑢}   */ 

%MACRO Poststratification; 
         /* Ex-post weighting of the various sets of estimated probabilities of intime delivery: PD_by_T,  
           considering, versus not, the local random variations: LRV_ versus NOLRV_-prefixes */ 
         DATA LPF; SET LPF;  
              /* Using weights maximizing the �̂̂�(𝑪𝒐𝟐𝑪𝒅, 𝕥| 𝒲𝐶𝑜2𝐶𝑑)  */ 
              NOLRV_W_MIN_PDT_&Eu_stream=NOLRV_PD_by_T*W_MIN_&Eu_stream; 

       LRV_W_MIN_PDT_&Eu_stream=LRV_PD_by_T*W_MIN_&Eu_stream; 
            /* Using the standard weighting basis (SWB)  */ 
              NOLRV_W_SWB_PDT_&Eu_stream=NOLRV_PD_by_T*W_SWB_&Eu_stream; 

       LRV_W_SWB_PDT_&Eu_stream=LRV_PD_by_T*W_SWB_&Eu_stream; 
       /* Using weights maximizing the �̂̂�(𝑪𝒐𝟐𝑪𝒅, 𝕥| 𝒲𝐶𝑜2𝐶𝑑)  */ 
       NOLRV_W_MAX_PDT_&Eu_stream=NOLRV_PD_by_T*W_MAX_&Eu_stream; 
       LRV_W_MAX_PDT_&Eu_stream=LRV_PD_by_T*W_MAX_&Eu_stream; 
  RUN; 

         /* Calculations of KPIs by summation of weighted estimates of the probabilities of intime delivery */ 
         PROC SORT DATA=LPF; BY &SortBy; RUN; 
      PROC MEANS DATA=LPF NOPRINT; BY &SortBy;  
              VAR NOLRV_W_MIN_PDT_&Eu_stream NOLRV_W_SWB_PDT_&Eu_stream             
                  NOLRV_W_MAX_PDT_&Eu_stream LRV_W_MIN_PDT_&Eu_stream  
                  LRV_W_SWB_PDT_&Eu_stream LRV_W_MAX_PDT_&Eu_stream;  
              OUTPUT OUT=KPI_&Eu_stream  
                      SUM = NOLRV_MIN_KPI_&Eu_stream NOLRV_SWB_KPI_&Eu_stream         
                            NOLRV_MAX_KPI_&Eu_stream LRV_MIN_KPI_&Eu_stream    
                            LRV_SWB_KPI_&Eu_stream LRV_MAX_KPI_&Eu_stream;  
         RUN; 
%MEND Poststratification; 
 
/* VI. MACRO routine designed to predict the aggregate probabilities of in-time delivery */  
%MACRO Predictions; 
     /* VI.1. Extrapolation of the latent QoS-values specific to the various strata */ 
       The Postfitting Linear Model (PLM) procedure, used here after, 

(a) first, recovers parameters’ estimates through its RESTORE option, specifying where they were stored,  
          via a STORE-statement included in a previous model fitting procedure: cf. IV.1, here above;    

(b) next, it uses them to extrapolate responses corresponding to data on predictors,  
 through a SCORE-statement which specifies the source (DATA-option) of these data (previously    
 stored), as well as the output file (OUT-option).    

        PROC PLM RESTORE=SASUSER.MCL NOINFO; 
        /* The DATA- keyword in the SCORE statement refers to the file named Universe, describing the                     
        profiles of all the strata defining the postal universe, including their weights: 𝜔𝑠|𝐶𝑜2𝐶𝑑  [Table 2],             
        𝔀𝒔|𝑪𝒐𝟐𝑪𝒅 and 𝓌𝑠|𝐶𝑜2𝐶𝑑 [ Table 4], as well as those derived from these sets, relevant to aggregate          
        KPIs obtained using the 𝕧𝑜2𝑑  */ 
             SCORE DATA=Universe OUT=LPF PREDICTED=Score;  
        /* The PREDICTED keyword in the SCORE statement requires extrapolations of the so-called linear       
          predictor function (l.p.f.) values: i.e., the latent construct �̂�𝑠|𝕥 defined by (15.3)-(15.5).*/ 
       RUN; 
     /* VI.2. Insertion - in the LPF-file - of the simulated local random disturbances (cf. III, here above) */ 
     PROC SORT DATA=LPF; BY Zo; RUN; DATA LPF; MERGE LPF OUT_Clusters; BY Zo; RUN; 
     PROC SORT DATA=LPF; BY Zd; RUN; DATA LPF; MERGE LPF IN_Clusters; BY Zd; RUN; 
    /* VI.3. Calculations of the estimates of the strata-level probabilities of in-time delivery: Π̂𝑠,𝕥,  
           by application of formula (17), cf. § 4.2.2. */ 
     DATA LPF; SET LPF; Performance_level=_LEVEL_;  
         /* Taking local random variations in logistics into account */  
         LRV_PD_by_T = 1/(1+EXP(−(Score+upsilon_o+upsilon_d))); 
         /* Ignoring local random variations in logistics */ NOLRV_PD_by_T = 1/(1+EXP(−Score)); 
     RUN; 
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     /* VI.4. Computations of the estimates of aggregate KPIs,  
       through execution of the Poststratification-MACRO: cf. V, here above */ 
     LET Eu_stream = Eu2Eu; 
          LET SortBy = Performance_level;  
          Poststratification;  
     LET Eu_stream = Co2Eu;  
          LET SortBy = Co Performance_level; 
          Poststratification;  
     LET Eu_stream = Eu2Cd;  
          LET SortBy = Cd Performance_level;  
           Poststratification; 
%MEND Predictions; 
/* VII. MACRO governing the resampling and replicating the estimation of the aggregate KPIs  
  on each 𝑏 bootstrap-sample */  
%MACRO Simulation; 
        DO b=1  TO &N_samples; 
       /* Unrestricted Random Sampling (option abbreviated: URS) - i.e., with replacement - of real test-records,    
           selected from the parent sample of size: n, by the SURVEYSELECT- procedure */ 
           PROC SURVEYSELECT  
               DATA=EtE_records METHOD=URS n=&Sample_size OUTHITS OUT=Sample NOPRINT;          
           RUN; 
       /* Call to the routine fitting the MCL to the bootstrap sample: cf. IV, here above */ 
            MCL_parametrization;  
         /* Call to the routine estimating aggregate KPIs: cf. VI, here above */ 
            Predictions; 
       /* Stockpiling of KPIs’ estimates */ 
            IF &b=1  THEN  DO;   
                            DATA BOOTSTRAP_Eu2Eu; SET KPI_Eu2Eu; RUN;  
                            DATA BOOTSTRAP_Co2Eu; SET KPI_Co2Eu; RUN; 
                            DATA BOOTSTRAP_Eu2Cd; SET KPI_Eu2Cd; RUN;  
                       END; 
            ELSE  DO;  
                    DATA BOOTSTRAP_Eu2Eu; SET BOOTSTRAP_Eu2Eu KPI_Eu2Eu; RUN;  
             DATA BOOTSTRAP_Co2Eu; SET BOOTSTRAP_Co2Eu KPI_Co2Eu; RUN;  
             DATA BOOTSTRAP_Eu2Cd; SET BOOTSTRAP_Eu2Cd KPI_Eu2Cd; RUN;    
                  END; 
        END; 
%MEND Simulation; 
 
/* VIII. Execution statement running the bootstrapping MACRO */ 
 Simulation; 
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