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ABSTRACT 

Abstract 

The digital economy exerts both positive and negative influences on urban sustainable development, yet there is a 

notable gap in the existing research concerning its impact on energy intensity and the underlying mechanisms. this 

study pioneers the investigation of a nonlinear relationship between the digital economy and energy intensity, 

revealing a significant inverted U-shaped relationship. Specifically, we observe a noteworthy reduction in energy 

intensity when the digital economy index surpasses 0.286. Our empirical findings indicate that the digital economy 

not only directly influences energy intensity but also exerts an indirect impact through initiatives such as the 

promotion of green innovation and the agglomeration of high-tech industries. Importantly, the promotional effects 

of the digital economy exhibit heterogeneity with respect to geographical location, resource endowment, and urban 

scale. This paper contributes to the theoretical understanding of information technology in urban green 

development by analyzing the mechanisms of the digital economy at the urban level and its intricate impact on 

energy intensity. 
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1. Introduction 

Energy input has consistently served as a pivotal driver for global industrialization and rapid economic 

expansion. Given the escalating concerns about climate change and significant shifts in the global energy landscape, 

governments, the academic community, and the general public have widely recognized the issue of energy intensity 

(Anu et al., 2023; Jiang et al., 2024; Sun et al., 2022). Notably, China has drawn particular attention due to its 

comparatively high unit energy consumption, which is approximately twice the world average, three times that of 

the United States, and seven times that of Japan (Song et al., 2023; Yang et al., 2023). As a result, enhancing energy 

efficiency and reducing energy-related carbon emissions have become indispensable pathways towards achieving 

carbon neutrality goals, considering the imperative of ensuring economic stability and development. 

Energy Intensity (ENI1 ), defined as the energy consumed per unit of GD,, serves as a critical metric for 

assessing a nation's energy efficiency, carbon emissions, and overall sustainable development (Lin & Zhu, 2021; 

Wang et al., 2022; Wurlod & Noailly, 2018). Scholars have extensively explored the driving factors and constraints 

influencing ENI, encompassing technological advancements and environmental regulations (Balado-Naves et al., 

2023; Bashir et al., 2021), providing valuable insights into the promotion of green energy development. However, 

the existing studies have predominantly concentrated on examining the influence of different factors on ENI within 

the context of traditional economic conditions. They have not adequately explored the changes in ENI under new 

economic paradigms. Moreover, most of these studies assume a linear relationship between influencing factors and 

ENI, potentially overlooking complex nonlinear dynamics. 

With the rapid evolution of the global technological revolution and industrial transformation, DIGE has 

emerged as a powerful force driving economic transitions on a global scale. (Liu et al., 2023; Ma & Zhu, 2022; Skare 

et al., 2023). Existing studies have unveiled intricate links between the DIGE and diverse domains, including urban 

green development (Luo et al., 2022; Ma & Zhu, 2022; Zhang et al., 2022), carbon emissions (Meng et al., 2023; 

Zhang et al., 2022; Zhou et al., 2022), and air pollution mitigation (Yang et al., 2021; Zhang & Ran, 2023). However, 

whether the development of the DIGE truly lowers urban ENI remains underexplored, and the underlying 

mechanisms lack comprehensive investigation. 

This article aims to fill these research gaps by elucidating the significant implications of the DIGE for urban 

sustainable development and exploring its nonlinear impact on ENI. Simultaneously, it seeks to offer guidance for 

formulating digitization and sustainable development policies, aligning with carbon neutrality strategies. The 

potential contributions of this study may be outlined as follows: 

Integrated Research Framework and Empirical Evidence: This study integrates the DIGE and ENI into a unified 

research framework, revealing that DIGE has both positive ("light side") and negative ("dark side") impacts on ENI, 

resulting in an inverted U-shaped relationship. This finding challenges traditional linear assumptions in existing 

literature and provides new insights into the dynamic interplay between digitalization and energy efficiency. 

Empirical testing, conducted using data from 282 Chinese cities from 2011 to 2021, provides verified evidence for 

the specific effects, mechanisms, and heterogeneity analysis of the DIGE on ENI. The study demonstrates that while 

DIGE may initially increase ENI due to its "dark side" impacts, it ultimately reduces ENI by accelerating green 

innovation (GRI) and promoting high-tech industrial agglomeration (HTIA). This evidence facilitates the adoption 

of more effective measures by cities during the digital transformation process, enabling the simultaneous 

advancement of digitization and green development. 

Mechanism Exploration and Heterogeneity Analysis: Further discussions unveil that the DIGE primarily 

mitigates its negative impact on ENI by accelerating green innovation (GRI) and promoting high-tech industrial 

agglomeration (HTIA), subsequently reducing ENI. Heterogeneity analysis indicates that the reduction of ENI due 

 
1 Abbreviations in the paper are as follows: digital economy(DIGE); energy intensity(ENI); green innovaiton(GRI); high-tech industrial 
agglomeration (HTIA) 
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to the DIGE is particularly prominent in eastern cities, southern cities, cities along the Yangtze River Economic Belt, 

resource-based cities, high-economic-development cities, and large cities. This nuanced understanding contributes 

to tailored policy recommendations for different city characteristics. 

2. Literature review and hypothesis development 

There are some gaps in the existing studies when discussing the relationship between DIGE and ENI. On the 

one hand, while some studies suggest that technological advancements reduce ENI (Lin & Xu, 2019; Wang & Zhou, 

2018), they often assume a linear relationship and do not consider the potential nonlinear effects of the DIGE on 

ENI. On the other hand, the adverse effects of the DIGE on urban ENI remain underexplored, and consensus on 

research findings is lacking. Despite the potential of the DIGE to reduce ENI through technological innovation and 

improved resource allocation efficiency, digital devices, escalate energy consumption during the investment phase 

(Krause & Tolaymat, 2018; Li & Wang, 2022). Operational processes also sustain continuous energy consumption 

(Avom et al., 2020; Hu, 2023). Therefore, neglecting the nonlinear relationships among economic variables and 

employing conventional linear methods to investigate the impact of the DIGE on ENI might result in biased estimates 

(Liu et al., 2024; Luo et al., 2024). 

2.1. Test of hypothesis 1: Nonlinear relationship between DIGE and ENI 

2.1.1. The bright side of DIGE and ENI 

The Digital Economy, an innovative economic paradigm emerging from the era of data and information, is 

instigating profound technological changes and digital empowerment. It reshapes resource allocation and modes 

of production, driving revolutions in energy production and consumption across various stages—from production 

and processing to transformation and end-use (Ma & Zhu, 2022; Zhou et al., 2022; Skare et al., 2023). 

From a macro perspective of urban governance, the development of DIGE contributes significantly to reducing 

ENI. First, leveraging technological advantages such as big data, DIGE has the potential to upgrade traditional energy 

infrastructure. The rise of innovative digital, low-carbon, and energy-efficient technologies drives the real economy 

towards more sustainable, low-carbon production methods and smarter manufacturing processes. This 

optimization of energy resource allocation promotes large-scale utilization of clean energy, contributing to a 

decrease in ENI (Chen, 2022). Second, empowered by digital technology, digitized modes of production interlink 

diverse elements-technology, data, and energy-generating synergies within digital networks and consequently 

leading to a reduction in ENI (Li, 2022; Liu et al., 2024). Third, DIGE facilitates the acquisition and transmission of 

information. Environmental protection agencies can use digital platforms to monitor companies' energy usage and 

implement corresponding incentive measures (Yang et al., 2023). 

From the viewpoint of enterprise production and operations, digital technologies provide multiple strategies 

for reducing ENI. First, digital technologies optimize existing production methods and processes, driving 

technological advancements and enhancing energy utilization efficiency within enterprises (Ding et al., 2024). 

Moreover, the integration of digital technologies, industrial robots, and other intelligent terminal systems elevates 

the digitalization level of enterprise production systems. This enhanced resource allocation efficiency contributes 

to a reduction in ENI (Du et al., 2023). Second, digital finance improves the fund circulation environment, reduces 

transaction costs for green financial products, and directly supports financing for innovative entities such as 

enterprises such as enterprises (Mu et al., 2023). By judiciously channeling capital into green and advanced 

technology sectors, financial organizations play a pivotal role in fostering technological advancements in the energy 

domain, thereby contributing to a reduction in ENI (Razzaq et al., 2023). Additionally, digital technologies also 

enhances enterprises' energy monitoring and management capabilities, promoting advancements in renewable 
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energy technologies (Lange et al., 2020). 

In the context of daily life, the widespread adoption of remote work has resulted in fewer non-essential offline 

economic activities among employees, subsequently decreasing carbon emissions linked to activities like 

commuting and physical work meetings (Li et al., 2023; Marz & Sen, 2022). In addition, smart home systems and 

interconnected devices can more accurately monitor and regulate energy usage. For instance, smart thermostats 

can automatically adjust indoor temperatures based on residents' habits and weather forecasts, optimizing energy 

usage and reducing wastage (Qin et al., 2022). Online shopping platforms frequently provide consumers with 

product energy efficiency labels and carbon footprint data, assisting them in choosing products with lesser 

environmental impact. Additionally, through shared mobility and accommodation models, resource utilization rates 

have significantly improved (Storch et al., 2021). Taking shared bicycles as an example, they reduce energy 

consumption and environmental pollution. Moreover, through route optimization and intelligent scheduling 

technologies, they decrease ENI (Chen et al., 2020). 

2.1.2. The dark side of DIGE and ENI 

While the energy-saving effects of digital economic development have garnered widespread attention, it is 

equally essential not to overlook the adverse impact of the DIGE on ENI. 

The digital industry, known for its high energy consumption, has been shown in existing research to contribute 

to an energy rebound effect due to its expansion in scale, thereby intensifying emissions (Li & Wang, 2022; Liu et 

al., 2024). On the one hand, various smart devices are continuously expanding, increasing the demand for stable 

electricity supply from households, businesses, and government agencies. The energy structure providing this 

electricity, especially in certain countries, still relies predominantly on fossil fuels. This undoubtedly further 

intensifies carbon emissions, making it difficult to reduce ENI (Su et al., 2024). The development and maintenance 

of digital infrastructure lead to a significant surge in electricity requirements, resulting in heightened energy 

consumption for the establishment, operation, and upkeep of such infrastructures (Avom et al., 2020; Luo et al., 

2024). 

On the other hand, the swift growth of the digital economy is paralleled by a considerable increase in electricity 

consumption. Data centers, tasked with processing, storing, and transmitting vast amounts of data globally, require 

substantial electrical support. Cooling systems, server maintenance, and network equipment all demand 

continuous power supply to remain operational (Jia et al., 2023). Furthermore, with the rising value of digital 

currencies, especially Bitcoin, the energy consumption associated with mining activities has attracted increasing 

attention. Several studies have noted that mining Bitcoin to the value of one US dollar demands over twice the 

energy needed to extract an equivalent value of gold (Krause & Tolaymat, 2018). 

We also acknowledge that although technologies such as smart grids, remote monitoring, and data analytics 

hold tremendous potential for enhancing energy efficiency, underdeveloped regions lag far behind their developed 

counterparts in the adoption of digital technologies due to constraints related to funding, technical expertise, and 

policies (Du et al., 2023). This disparity directly results in the uneven application of energy efficiency optimization 

technologies across different regions (Liu et al., 2024). The digital divide might impede communication and 

collaboration among different regions, hindering the widespread adoption of certain energy technological 

innovations (Yang et al., 2023). 

Therefore, considering both the positive and negative effects of the DIGE on ENI, it is essential to investigate 

the potential nonlinear relationship between them. Neglecting the nonlinearities might result in biased estimates 

and inadequate policy recommendations.Therefore, this paper posits hypothesis 1. 

Hypothesis 1: The impact of DIGE on ENI follows an inverted U-shaped curve. In other words, as the 

level of DIGE increases, it initially leads to an elevation in ENI. However, when the DIGE reaches a certain 
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threshold, ENI subsequently decreases. 

2.2. Test of hypothesis 2: DIGE, GRI and ENI 

DIGE reduces the cost of GRI by facilitating factor mobility, reducing information asymmetry, and easing credit 

constraints, nurturing opportunities for GRI. First, by overcoming time and space limitations in the transfer of 

innovative resources like information, digital infrastructure amplifies the speed of information dissemination. This 

acceleration reduces the costs associated with information search and resource consumption within the industrial 

chain for businesses. The advent of internet applications allows innovation resources such as knowledge, talent, 

and funds to flow freely, giving rise to an open, collaborative, and cooperative innovation network (Yang et al., 2022). 

Second, DIGE promotes the integration of financial resources with GRI. With the widespread adoption of low-carbon 

consumption habits among consumers, financial institutions are compelled to innovate green financial products, 

driving regional GRI (Anu et al., 2023). Third, DIGE enhances public oversight of businesses. The application of 

urban big data monitoring systems significantly reduces the cost of environmental information acquisition. Coupled 

with the increasing public awareness of environmental information, this forces companies to promote GRI and gain 

a better external reputation. 

Additionally, GRI contributes to reducing ENI. Technological advancement is pivotal, and GRI augments 

production efficiency and resource utilization for a win-win scenario in economic development and environmental 

conservation (Sun & Razzaq, 2022). For example, utilizing CCUS technology separates and captures carbon from 

industrial production and energy utilization processes, recycling it to reduce ENI. Furthermore, energy-intensive 

enterprises can prioritize low-carbon environmentally friendly materials during product design or improvement. 

Technological advancements, such as perovskite solar panels with potential efficiencies exceeding 30%, contribute 

to reducing ENI (Luo et al., 2022). Smart home technologies and green building designs also play a role in optimal 

energy usage efficiency and resource demand reduction in construction. Therefore, this paper proposes hypothesis 

2. 

Hypothesis 2: The DIGE reduces ENI by promoting GRI. 

2.3. Test of hypothesis 3: DIGE, HTIA and ENI 

DIGE effectively harnesses the spillover effects of knowledge and industrial upgrading, promoting high-tech 

industrial agglomeration (HTIA). 

Regarding knowledge spillover effects, high-tech industries, which are technology-intensive, require 

knowledge and innovative resources at lower costs. DIGE, represented by technologies like 5G and the industrial 

internet stimulates the permeation, facilitating the flow of resources for high-tech industries and guiding similar 

enterprises to concentrate in regions abundant with innovative elements, fostering spatial clustering of high-tech 

industries (,eng et al., 2023). Furthermore, digital economy growth (DIGE) facilitates the accurate alignment of 

fund supply and demand, broadens the scope of financial services and financing avenues, and mitigates the external 

financing challenges encountered by the high-tech industries. 

In terms of industrial upgrading effects, DIGE manifests in digital industrialization and industrial digitization, 

optimizing input-output structures within high-tech industrial parks. This optimization enhances the quality and 

efficiency of traditional production factors, markedly boosting production efficiency and overall factor productivity. 

It fosters the intelligent advancement of industries (Sturgeon, 2021). These developments attract external 

enterprises to relocate within the park, stimulating HTIA. 

HTIA mainly reduces urban ENI by capitalizing on economies of scale and technology spillover effects. The 

clustering of high-tech industries encourages the use of shared public infrastructure, which diminishes energy 
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consumption and transportation expenses. This communal infrastructure boosts energy utilization efficiency, 

thereby decreasing ENI (Liu & Zhang, 2021). HTIA accelerates research and development cooperation, personnel 

exchanges, and equipment sharing across the entire industry chain, strengthening spillover effects between high-

tech and traditional industries, encouraging green technological transformations, and product upgrades. For 

example, in high-tech industrial parks, different companies collectively utilize pollution control and emission 

reduction facilities, sharing pollution control costs, thereby diminishing per capita carbon emissions, input of 

production factors, and resources, reducing overall urban ENI (Tanaka & Managi, 2021). 

Regarding technology spillover effects, HTIA fosters better communication between technical experts and 

laborers, deepens the application of low-carbon technologies, and utilizes innovation clustering to reduce ENI. 

Simultaneously, traditional, resource-intensive industries like paper, steel, and cement manufacturing often exhibit 

high energy consumption. The intense competition among enterprises in agglomerated zones drives increased 

innovation investments, enhancing low-carbon technology capabilities. This dynamic stimulates comprehensive 

energy conservation and emission reduction within high-tech industry clusters, enhancing urban energy efficiency. 

Additionally, HTIA deepens specialization within and between industries, broadens channels for technological 

advancements, effectively enhancing production efficiency, reducing per capita carbon emissions, and diminishing 

urban ENI (Wang et al., 2022). Therefore, this paper proposes hypothesis 3. 

Hypothesis 3: The DIGE reduces ENI by promoting HTIA. 

3. Research design 

3.1. Methodology 

Building upon the theoretical analysis presented earlier and considering the potential nonlinear effects of DIGE 

on ENI as digital economic development advances, this study incorporates both the linear and quadratic terms of 

DIGE into the baseline regression model. This approach allows the research to comprehensively investigate both 

the positive and negative impacts of DIGE on ENI. 

𝐸𝑁𝐼𝑖𝑡 = 𝛼0 + 𝛼1𝐷𝐼𝐺𝐸𝑖𝑡 + 𝛼2𝐷𝐼𝐺𝐸𝑖𝑡
2 + 𝛼3𝑍𝑖𝑡 + 𝜇𝑖 + 𝛿𝑡 + 𝜀𝑖𝑡 (1) 

In Eq. (1), ENIit represents the energy intensity of city i at time t, DIGEit denotes the level of digital economic 

development in city i at time t, and 𝐷𝐼𝐺𝐸𝑖𝑡
2   represents the quadratic term of the level of digital economic 

development. Morever, this study introduces control variables represented by Zit. Here,  captures city-level fixed 

effects,  represents time-level fixed effects, and  represents the random disturbance term. 

(1) The regional economic development level (pgdp) is expressed as the logarithm of per capita gross domestic 

product. Regions with greater economic capabilities are typically more proficient in environmental protection. 

Concurrently, the rise in corporate income strengthens their inclination to implement energy-saving and emission-

reducing measures, consequently leading to a decrease in ENI. 

(2) Population density (pnd) is computed as the ratio of the year-end population to the urban area's size. 

Regions with high population density have the potential to attract a larger pool of innovative talent. This 

concentration of skilled individuals aids in the advancement and implementation of green technologies, leading to 

a significant decrease in ENI (Hong et al., 2023). 

(3) Foreign Direct Investment (FDI), as represented by the ratio of actual foreign investments in the current 

year to GD,, plays a pivotal role in augmenting corporate capital accumulation. A robust capital base ensures the 

maintenance of high levels of research and development, production technology, and managerial capabilities, 
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consequently leading to enhanced energy efficiency. Additionally, FDI can result in the relocation of highly polluting 

industries, consequently decreasing environmental impact. 

(4) Financial Development Level (fin) is represented by the ratio of the amount of loans granted by financial 

institutions to GD,. Zhang et al. (2020), using enterprise-level data from World Bank surveys, found a significant 

correlation between financing opportunities for Chinese manufacturing firms and the reduction of ENI. Financial 

development provides funds for overall economic development, accelerates information dissemination, and 

enhances resource allocation, thereby reducing ENI (Ma & Zhu, 2022). 

(5) The Urbanization Rate (urban) is calculated as the ratio of the urban population to the total population at 

the end of one year. The modification of consumption demand, factor supply, and infrastructure during urbanization 

aids in the refinement and advancement of industrial institutions, consequently leading to a reduction in ENI (Bilgili 

et al., 2017). 

(6) Environmental Regulations (regulation) are quantified by the natural logarithm of the count of 

environmental protection personnel in the region. The implementation of environmental regulations incentivizes 

enterprises to expedite the upgrading and adoption of energy-saving equipment, consequently leading to a 

reduction in ENI (Liu et al., 2023; Wu et al., 2020). 

Furthermore, to rigorously assess the nonlinear relationship between DIGE and ENI, we leverage insights from 

prior studies (Hansen, 1999; Ma & Zhu, 2022; Wang & Shao, 2023) and apply panel threshold models for thorough 

examination. 

𝐸𝑁𝐼𝑖𝑡 = 𝛼0 + 𝛼1𝐷𝐼𝐺𝐸𝑖𝑡 ⋅ 𝐼(𝐷𝐼𝐺𝐸𝑖𝑡 ⩽ 𝜃) + 𝛼2𝐷𝐼𝐺𝐸𝑖𝑡 ⋅ 𝐼(𝐷𝐼𝐺𝐸𝑖𝑡 > 𝜃) + 𝛼3𝑍𝑖𝑡 + 𝜇𝑖 + 𝛿𝑡 + 𝜀𝑖𝑡 (2) 

In Eq. (2), the threshold variable is denoted by DIGE, representing the threshold value. Equation (2) explores 

the single-threshold scenario, extendable to a multi-threshold situation based on econometric requirements. 

Consistent with established research methodologies (Hao et al., 2023; Cheng et al., 2023; Zhang et al., 2022), 

this study adopts the classical three-step approach to scrutinize the impact pathway of DIGE on ENI, as outlined 

below: 

𝑀𝑉𝑖𝑡 = 𝛽0 + 𝛽1𝐷𝐼𝐺𝐸𝑖𝑡 + 𝛽2𝐷𝐼𝐺𝐸𝑖𝑡
2 + 𝛽3𝑍𝑖𝑡 + 𝜇𝑖 + 𝛿𝑡 + 𝜀𝑖𝑡 (3) 

𝐸𝑁𝐼𝑖𝑡 = 𝛼0 + 𝛼1𝐷𝐼𝐺𝐸𝑖𝑡 + 𝛼2𝐷𝐼𝐺𝐸𝑖𝑡
2 + 𝛼3𝑀𝑉𝑖𝑡 + 𝛼4𝑍𝑖𝑡 + 𝜇𝑖 + 𝛿𝑡 + 𝜀𝑖𝑡 (4) 

In Eq. (3), MV denotes the mediating variables (GRI and HTIA). The confirmation of a mediating effect occurs 

when MV exhibits a significant positive effect in Model (3) and maintains significance in Model (4). If the effect 

remains significant in Model (4), it signifies a partial mediating effect. If neither effect is significant, it implies a 

complete mediating effect. 

3.2. Sample selection 

3.2.1. Dependent variable 

In measuring ENI, a common method used in numerous studies is to calculate the ratio of total annual energy 

consumption to the actual GD,, a technique exemplified by various researchers (Bashir et al., 2021; Guo et al., 2023). 

Nevertheless, current research faces limitations as it predominantly operates at the national and provincial levels 

due to data scarcity. This broad geographical focus obscures the heterogeneity in urban energy consumption within 

regions. 

,revious research has established a notable positive correlation between nighttime light data and energy 

consumption (Chen et al., 2022; Zhang et al., 2023; Zhu et al., 2019). Hence, drawing on this literature, we adopted 

a top-down approach to estimate urban carbon emissions from provincial nighttime light data (Zhao et al., 2019; 



Yang and Ye                                               Review of Economic Assessment 2024 3(4) 70-92 

77 
 

Zhou et al., 2022). Initially, we employed provincial energy consumption data (measured in ten thousand tons of 

standard coal) as the dependent variable, with nighttime light brightness in each province serving as the 

independent variable. A panel data model was then constructed to ascertain the coefficients and residuals between 

these variables. Subsequently, a top-down approach was applied to estimate total energy consumption at the urban 

level based on nighttime light brightness values at the city level. Lastly, the ratio of energy consumption at the city 

level to the GD, was utilized as the measure of ENI. 

3.2.2. Key independent variable 

In measuring DIGE, considering the availability of urban-level data and drawing on the research of existing 

scholars (Lin & Huang, 2023; Wang & Shao, 2023), this study employs the following indicators to represent urban-

level digital development: internet penetration rate (the number of broadband internet users per hundred people), 

the workforce in relevant sectors (the proportion of employees in the computer services and software industry to 

total urban employees), relevant output (per capita total volume of telecommunications services), and mobile phone 

penetration rate (the number of mobile phone users per hundred people). Additionally, the urban digital financial 

development level is gauged by the digital finance index calculated by Peking University. Finally, DIGE is computed 

through principal component analysis. 

3.2.3. Mediating variables 

GRI: Owing to the lack of official statistical data on urban green innovation in China, this study relies on insights 

from previous research (Chen et al., 2022; Li et al., 2023; Meng et al., 2023). The study aligns patent information 

from the Chinese State Intellectual ,roperty Office with the green patent classification list published by the World 

Intellectual ,roperty Organization (WI,O) in 2010, thus creating China's green patent dataset. Subsequently, these 

data are further harmonized at the urban level, serving as a proxy variable for GRI. In empirical testing, this variable 

undergoes natural logarithmic transformation after adding 1. A higher value denotes a greater level of GRI. 

HTIA: Industrial agglomeration encompasses the effects and centripetal force arising when enterprises 

concentrate (Zheng & He, 2022). The heightened concentration of high-tech enterprises in a specific region fosters 

increased activities among similar enterprises. This concentration is measured by the ratio of the output value or 

employment in high-tech industries to the total industrial output value of the region. An upswing in the industrial 

agglomeration index signals augmented agglomeration, while a decline indicates either weakened agglomeration 

or industry diffusion (Liu & Zhang, 2021). Despite the availability of current data on specific sectors of high-tech 

industries from various bureaus of statistics and science and technology departments, detailed and comprehensive 

data on high-tech industries and their subdivisions are accessible at the provincial (direct-administered municipality) 

level. However, there are data gaps at the prefecture-level cities, necessitating supplementation with information 

published by the science and technology departments (Wang et al., 2022). Owing to data limitations, this study 

employs the location quotient method to calculate HTIA. 

𝐻𝑇𝐼𝐴𝑖𝑡 = (𝐻𝑖𝑡|𝐻𝑡) (𝑃𝑖𝑡|𝑃𝑡)⁄ (5) 

In Eq. (5), the variables are defined as follows: Hit represents the number of employees working in high-tech 

enterprises in region i at time t, Pit represents the total number of employed individuals in region i at time t, and Ht 

and Pt represent the national number of employees in high-tech enterprises and the national total employment, 

respectively, at time t. A higher value of this ratio signifies a more substantial concentration of the high-tech industry 

in the respective region. 

3.2.4. Instrumental variables 



Yang and Ye                                               Review of Economic Assessment 2024 3(4) 70-92 

78 
 

In the context of this study, the pursuit of reducing ENI may drive businesses to enhance production methods 

and adopt advanced technologies and production models, thereby fostering the development of local digital 

economies. Consequently, a reverse causal relationship between DIGE and ENI may exist. On the other hand, ENI is 

influenced by numerous factors, presenting challenges in controlling for all these variables and potentially leading 

to omitted variable bias. Acknowledging these potential issues, this study utilizes an instrumental variable (IV) 

approach to alleviate concerns related to endogeneity, facilitating the accurate identification of the specific effects 

of DIGE on ENI. 

(1) The initial instrumental variable is the topographical ruggedness of cities, labeled as IV_Land. Greater 

topographical ruggedness, at the outset, suggests higher construction and operational costs for digital 

infrastructure. This circumstance might prompt local governments to curtail investments in digital infrastructure 

development in those areas, potentially constraining the growth of DIGE to some extent, thereby satisfying the 

relevance condition of the instrumental variable (Tang et al., 2021). Additionally, topographical ruggedness is 

exogenous and does not exert influence on urban ENI (Meng et al., 2023). 

(2) The second instrumental variable selected for this study is the 1984 postal density, designated as IV_Post. 

The undeniable connection between digital technology and historical post and telegraph offices is well-established 

(Ma & Zhu, 2022). In an era before the widespread adoption of landline phones, people predominantly relied on 

post offices for communication, and these offices held responsibility for landline phone installations. The 

distribution of post offices played a pivotal role in the proliferation of landline telephones, shaping the 

contemporary landscape of internet technologies. This connection satisfies the relevance requirement for an 

instrumental variable. Moreover, the utilization of traditional telecommunication entities such as post offices has 

declined now, diminishing their impact on ENI and thereby fulfilling the exogeneity condition for instrumental 

variable selection. 

As topographical ruggedness and postal density constitute cross-sectional data, we create interaction terms 

between these factors and the previous year's number of internet users in China. This approach, as elucidated by 

Nunn and Qian (2011), enables the generation of specific instrumental variables for our analysis. 

3.3. Data 

Selecting Chinese cities as the research sample is driven by multiple crucial factors: 

(1) Economic Scale and Representativeness: China boasts a vast and diverse economic and social landscape. 

Owing to geographical, economic, and cultural disparities across the country, different cities demonstrate 

substantial variations in the DIGE and energy usage. This diversity ensures that the research findings are highly 

representative of the multifaceted nature of China's urban environments. 

(2) Rapid Development of the DIGE: Over the past decade, advancements spanning from mobile payments to e-

commerce and, subsequently, the sharing economy have positioned China at the forefront globally. This unique 

trajectory provides researchers with a valuable "laboratory" setting to observe and analyze the tangible impact of 

the DIGE on energy consumption within an environment that is highly digitized. 

(3) Transition in Energy Structure: China is currently in the process of transitioning from a predominantly coal-

based energy structure to one that is cleaner and more renewable. This ongoing shift underscores the importance 

of exploring how the DIGE influences ENI. Investigating this relationship in the context of China's evolving energy 

landscape holds significant implications for steering sustainable development both within the nation and on a 

global scale. 

The study encompasses data from 282 prefecture-level cities in China, spanning the years 2011 to 2021. 

Diverse data sources, including the "China City Statistical Yearbook," CSMAR, EPS, Wind, and other databases, were 

utilized. To enhance the accuracy of regression analyses and mitigate the potential impact of varying units and 
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outliers, certain variables underwent unit transformation, logarithmic transformation, and a winsorizing technique. 

This involved trimming extreme values at both ends by 1%. Following these meticulous preparations (Table 1), the 

study proceeded with a series of subsequent analyses and discussions. 

Table 1. Descriptive statistics of variables. 

Variable Obs Mean Std. Dev. Min Max 

DIGE 3102 6.901 0.523 4.470 8.552 
ENI 3102 0.187 0.048 0.058 0.518 
pgdp 3102 8.685 0.988 6.744 17.280 
pnd 3102 7.352 4.028 0.043 15.435 
fin 3102 1.674 3.632 0.025 49.500 
fdi 3102 0.016 0.017 0.000 0.192 
urban 3102 0.404 0.212 0.083 1.091 
regulation 3102 3.325 1.460 -0.139 8.157 
GRI 3102 4.753 1.675 0.693 10.454 
HTIA 3102 4.072 0.136 3.621 4.556 

 

4. Results and discussion 

4.1. Baseline model 

Table 3 presents the estimated results of DIGE on ENI. Columns (1) and (2) discuss the specific impact of DIGE 

on ENI based on Ordinary Least Squares (OLS) models. The findings reveal a notably positive coefficient for the 

independent variable (DIGE) and a significantly negative coefficient for the squared independent variable (DIGE2), 

indicating a pronounced inverted U-shaped relationship between DIGE and ENI. This supports hypothesis 1. 

Columns (3) and (4) exhibit the regression outcomes utilizing a fixed-effects model, corroborating the substantial 

inverted U-shaped effect between DIGE and ENI. This conclusion contradicts the findings of Guo et al. (2023) and 

Matthess et al. (2023). Their research identified a linear impact of DIGE on ENI, whereas our study delves into the 

nonlinear influence between DIGE and ENI, aligning more closely with real-world dynamics. In summary, DIGE, 

while consuming electricity, has also driven economic growth, ultimately leading to a reduction in ENI (Hong et al., 

2023; Matthess et al., 2023). Furthermore, to enhance the robustness of the conclusions, we examined the 

relationship between the two using a threshold model. The results indicate when the independent variable DIGE < 

0.286, DIGE reduces ENI. When DIGE > 0.286, DIGE can also decrease ENI, and the effect is significantly more 

pronounced than before the turning point. 

Additionally, the regression results for the control variables align with our expectations and are consistent with 

the existing body of literature. The coefficient of "pgdp" exhibits a highly significant negative effect at the 1% level, 

implying that an increase in economic density is associated with a reduction in ENI. This outcome is consistent with 

the findings of Lin and Huang (2023). Simultaneously, our findings substantiate the presence of the "pollution halo 

hypothesis," as posited by Jia et al. (2021). This theory suggests that developed countries, with more stringent 

environmental regulations in comparison to developing nations, have a positive influence on the host country's 

environment due to the demonstration effect of environmentally friendly technologies, particularly when 

multinational corporations adhere to higher environmental standards (Shao et al., 2019). Additionally, the 

coefficient associated with the urban exhibits a statistically significant negative relationship, consistent with the 

results reported by Balado-Naves et al. (2023). 
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Table 2. Regression analysis results of the DIGE on ENI. 

 (1) (2) (3) (4) (5) 
 OLS Fixed effects Threshold model 

DIGE 0.025*** 0.248*** 0.005** 0.068***  
 (0.001) (0.023) (0.002) (0.010)  
DIGE2  -0.021***  -0.005***  
  (0.002)  (0.001)  
DIGE(DIGE≦0.286 )     -0.016*** 
     (0.003) 
DIGE(DIGE>0.286)     -0.039*** 
     (0.002) 
pgdp -0.013*** -0.012*** -0.002*** -0.002*** -0.009*** 
 (0.001) (0.001) (0.001) (0.001) (0.002) 
pnd -0.003*** -0.003*** -0.003*** -0.003*** -0.004*** 
 (0.000) (0.000) (0.000) (0.000) (0.000) 
fdi -0.120*** -0.138*** -0.085*** -0.096*** 0.062 
 (0.033) (0.032) (0.024) (0.024) (0.068) 
fin 0.002*** 0.002*** 0.000 0.000 0.000 
 (0.000) (0.000) (0.000) (0.000) (0.000) 
urban -0.047*** -0.044*** 0.075*** 0.066*** -0.035 
 (0.003) (0.003) (0.009) (0.009) (0.035) 
regulation 0.003*** 0.003*** 0.055*** 0.051*** -0.026*** 
 (0.000) (0.000) (0.006) (0.006) (0.007) 
_cons 0.137*** -0.781*** -0.397*** -0.575*** 0.290*** 
 (0.011) (0.074) (0.024) (0.037) (0.018) 
City FE × × √ √ √ 
Year FE × × √ √ √ 
N 3102 3102 3102 3102 3102 
adj. R2 0.629 0.659 0.936 0.937 0.520 

Notes: Columns (1) and (2) present the results of the OLS model regression.Columns (3) and (4)presents the results of the 
fixed-effects model regression. Columns (5) to (6) present the results of the Threshold model regression. ***, **, * indicate 
significance at the level of 1%, 5%, and 10%.Parenthetically presented is the clustered robust standard error. The following 
table is the same as this. 

4.2. Robustness test results 

4.2.1. Replace dependent and independent variables 

In the section dedicated to robustness testing, this study, in alignment with prior research (Yang & Wei, 2019), 

reexamines the ENI by employing electricity consumption per unit of GD, as a metric. Whether examined globally 

or within the context of China, the persistent growth in electricity demand driven by the DIGE has underscored the 

pivotal role of electricity in the overall energy consumption framework. The most notable departure of the DIGE 

from traditional models is the pivotal role assigned to data as a critical production factor. Across all stages, from 

data generation and transmission to processing, storage, and application, electricity is an indispensable 

foundational energy source. Owing to the exponential expansion of data presentation, every facet of data processing 

generates a substantial demand for electricity, as noted by Hong et al. (2023) and Lin and Huang (2023). 

In measuring urban digital economic development, we rely on insights from prior studies (Lin & Zhou, 2021; 

Ren et al., 2021; Zhang et al., 2023) and employ internet penetration as an replaceable indicator of DIGE. The results 

of the regression analysis, presented in Table 3, columns (1) and (2), incorporate the substituted variables. The 

findings indicate that the coefficient of DIGE on ENI remains statistically significant, offering additional proof of the 

robustness of our model. 
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4.2.2. Using pro*year interactive fixed effects 

Traditional panel data models usually incorporate individual fixed effects and time fixed effects. These account 

for variations over time that are not influenced by individual factors and individual differences that remain constant 

over time. Conversely, panel interactive fixed effects models, in comparison to their classical counterparts, provide 

superior data fitting capabilities (Bai, 2013). Thanks to historical and geographical factors, unique regional 

characteristics are evident in the development of various Chinese cities. These distinctions can induce systematic 

trends in DIGE and ENI across different regions over time, potentially impacting the precision of the findings. 

Consequently, this study integrates province-year interactive fixed effects into Eq (1) to assess the influence of DIGE 

on ENI (Ma and Zhu, 2022). The findings in Table 3, column (3), reveal an inverted U-shaped relationship between 

DIGE and ENI. 

4.2.3. Delete the sample data of Chinese municipalities 

Owing to the distinctive political and economic traits of China's centrally administered municipalities, such as 

Beijing, Tianjin, Shanghai, and Chongqing, businesses within their jurisdictions may benefit from greater political 

support and digital advantages in contrast to enterprises in other areas. To alleviate the impact of this specific 

situation, we removed samples from these cities before carrying out the regression analysis (Wang & Dong et al., 

2022). The results, displayed in Table 7, column (4), demonstrate that even after the exclusion of these samples, the 

inverted U-shaped relationship between DIGE and ENI remains intact, in accordance with the initial findings. 

4.2.4. Replace the standard error clustering level 

Acknowledging the inherent correlation among different cities, we employed double-clustered standard errors 

in our analysis, which take into account both individual and time dimensions. This adjustment effectively mitigates 

issues like autocorrelation and heteroscedasticity, thereby fortifying the robustness of our statistical inferences 

(,etersen, 2009). The results, as showcased in Table 3, column (5), persistently align with the baseline findings. 

4.2.5. Considering the impact of significant public health crises 

Considering our sample period from 2011 to 2021, it is crucial to acknowledge the profound impact of the 

COVID-19 on the DIGE, as highlighted by Liu et al. (2022). Therefore, we partitioned our sample into two periods, 

namely 2011-2019 and 2020-2021, to evaluate the effects of model estimation within these sub-intervals. The 

detailed regression results are showcased in Table 3, columns (6) and (7). ,articularly noteworthy is that during 

the pandemic period, the impact of DIGE on reducing ENI became notably pronounced. This can be attributed to the 

widespread adoption of remote work and online education—activities that led to a reduction in energy 

consumption. This finding is consistent with existing literature (Li et al., 2023; Marz & Sen, 2022), thereby 

reinforcing the alignment of our results with conclusions from prior research. 

Table 3. Robustness test results. 

 

(1) (2) (3) (4) (5) (6) (7) 

Alternative 
measure of ESI 

Alternative 
measure of DIGE 

Interactive 
fixed effect 

Deleting Extreme 
Samples 

Replacing the 
standard error 
clustering level 

2011-
2019 

2020-
2021 

DIGE 2.405***  0.023* 0.040*** 0.068** 0.068*** 0.090** 
 (0.132)  (0.012) (0.010) (0.028) (0.012) (0.039) 
DIGE2 -0.163***  -0.001 -0.003*** -0.005** -0.005*** -0.006** 
 (0.010)  (0.001) (0.001) (0.002) (0.001) (0.003) 
dige2  2.613***      
  (0.510)      
dige22  -0.951***      
  (0.189)      
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pgdp -0.030*** 0.173*** 0.000 -0.002*** -0.002 -0.001 -0.035*** 
 (0.009) (0.036) (0.001) (0.001) (0.001) (0.001) (0.008) 
pnd -0.012*** -0.003*** -0.002*** -0.003*** -0.003*** -0.003*** -0.010*** 
 (0.003) (0.000) (0.000) (0.000) (0.000) (0.000) (0.001) 
fdi 0.790** -0.089*** -0.029 -0.110*** -0.096 -0.104*** -0.807*** 
 (0.318) (0.024) (0.027) (0.024) (0.065) (0.025) (0.249) 
fin 0.009*** 0.000 0.000 0.000 0.000 0.000 0.003*** 
 (0.003) (0.000) (0.000) (0.000) (0.000) (0.000) (0.001) 
urban 0.823*** 0.078*** 0.013 0.075*** 0.066** 0.064*** -0.078*** 
 (0.112) (0.009) (0.010) (0.008) (0.027) (0.010) (0.018) 
regulation 0.837*** 0.051*** 0.037*** 0.045*** 0.051*** -0.290** 0.019*** 
 (0.076) (0.006) (0.006) (0.006) (0.008) (0.127) (0.004) 
City FE × √ √ √ √ √ √ 
Year FE × √ √ √ √ √ √ 
Pro*Year FE × × √ × × × × 
_cons -12.403*** -3.067*** -0.392*** -0.468*** -0.575*** 0.547 -0.173 
 (0.478) (0.525) (0.043) (0.037) (0.098) (0.399) (0.157) 
N 3102 3102 3047 3058 3102 2538 564 
adj. R2 0.973 0.937 0.950 0.938 0.937 0.932 0.998 

 

4.3. Endogeneity test 

In Equation (1), the possibility of endogeneity arises due to potential omitted variables and measurement 

errors. Although the fixed effects model alleviates endogeneity to some degree, to enhance the robustness and 

reliability of our conclusions, in this study, we use instrumental variable methods to address concerns about 

endogeneity. The outcomes of the regression analysis, conducted with these instrumental variables, are displayed 

in Table 4. 

The instruments employed for columns (1) and (2) are labeled Iv_post, for columns (3) and (4) as Iv_land, and 

for columns (5) and (6) as IV_Land. The outcomes suggest that, even after addressing endogeneity concerns, the 

relationship between DIGE and ENI remains stable, with minor fluctuations in coefficient magnitudes, reaffirming 

the existence of an inverted U-shaped effect. All models in this analysis were estimated using the two-stage least 

squares method. Importantly, the Anderson LM and Wald F statistics, which passed the correlation test, affirm the 

appropriateness of the instrumental variables chosen for this study. 

An important observation is that the estimates derived from instrumental variables are higher than the 

corresponding OLS estimates and fixed effects model results. Consistent with the research by Nobel laureate Card 

(2001), We attribute this phenomenon to the unobservable differences in the characteristics of the "treatment" and 

"control" groups inherent in the instrumental variable (IV) model. IV estimation tends to show a more substantial 

upward bias compared to the corresponding OLS estimates due to these unobserved distinctions. 

Table 4. Endogeneity test results. 

 Iv_post Iv_land 
 Iv_post ENI Iv_land ENI 
 (1) (2) (3) (4) 

DIGE  0.787***  1.198*** 
  (0.096)  (0.117) 
DIGE2  -0.062***  -0.093*** 
  (0.007)  (0.009) 
Iv_post -0.002***    
 (0.001)    
Iv_ land   -0.028***  
   (0.002)  
pgdp 0.007*** -0.003* 0.005*** 0.001 
 (0.000) (0.002) (0.001) (0.002) 
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pnd 0.002*** -0.002*** 0.002** -0.001 
 (0.000) (0.001) (0.000) (0.001) 
fdi -0.392*** -0.187*** -0.394*** -0.351*** 
 (0.051) (0.060) (0.051) (0.076) 
fin 0.001*** -0.001** -0.001* -0.002*** 
 (0.000) (0.000) (0.000) (0.001) 
urban -0.046*** -0.054*** -0.032*** -0.062*** 
 (0.017) (0.016) (0.001) (0.021) 
regulation 0.058*** 0.011 -0.014 0.036*** 
 (0.006) (0.008) (0.008) (0.011) 
City FE √ √ √ √ 
Time FE √ √ √ √ 

Anderson LM  87.473***  
100.655*** 
(0.0000) 

Wald F  90.017***  
104.084*** 

(0.0000) 
F 90.017  104.084  
N 3102 3102 3102 3102 
R2 0.276 0.331 0.193 0.147 

 

5. Further discussion 

5.1. Mechanism analysis 

The results of testing the mediating effects in GRI are presented in Table 5, with columns (1) and (2) focusing 

on GRI and columns (3) and (4) on HTIA. In column (1), it is observed that the coefficient of the squared term of 

DIGE is significantly positive. This suggests that DIGE has a positive impact on GRI once it reaches a certain 

threshold. Moving to column (2), it is demonstrated that GRI can effectively reduce ENI. The significance of both the 

linear and squared terms of DIGE in column (2) implies that GRI serves as a partial mediator in the influence of 

DIGE on ENI. These empirical findings provide support for the predictions of hypothesis 2. Our study results are 

consistent with findings from existing research (Dou & Gao, 2022; Chen et al., 2021; Wurlod & Noailly, 2018). 

The results of testing the mediating effects in HTIA are presented in columns (3) and (4) of Table 5. In column 

(3), it is observed that both the first-order and squared coefficients of DIGE are significantly positive. This suggests 

that DIGE has a positive impact on HTIA. Moving to column (4), it is revealed that HTIA can effectively reduce ENI. 

Similarly, given the significance of both the first-order and squared terms of DIGE in column (4), it is suggested that 

HTIA plays a partial mediating role. These empirical results provide support for the predictions of hypothesis 3. Our 

results align with previous studies conducted by scholars, as referenced in works by Liu & Zhang (2021), Tanaka & 

Managi (2021), and Wang et al. (2022). HTIA facilitates the efficient allocation and utilization of resources, including 

labor and capital, within and between industries, leading to a reduction in ENI. 

Table 5. Mediating effects. 

 
 

(1) (2) (3) (4) (5) 
GRI ENI HTIA ENI ENI 

DIGE 0.443 0.069*** 0.057** 0.069*** 0.070*** 
 (0.276) (0.010) (0.026) (0.010) (0.010) 
DIGE2 0.027** -0.005*** 0.007*** -0.005*** -0.005*** 
 (0.011) (0.001) (0.002) (0.001) (0.001) 
GRI  -0.002***   -0.002*** 
  (0.001)   (0.001) 
HTIA    -0.021*** -0.019*** 
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    (0.007) (0.007) 
pgdp 0.088*** -0.002** -0.001 -0.002*** -0.002** 
 (0.019) (0.001) (0.002) (0.001) (0.001) 
pnd 0.042*** -0.003*** -0.026*** -0.004*** -0.004*** 
 (0.006) (0.000) (0.001) (0.000) (0.000) 
fdi 0.442 -0.095*** 0.287*** -0.090*** -0.090*** 
 (0.664) (0.024) (0.063) (0.024) (0.024) 
fin -0.002 0.000 -0.000 0.000 0.000 
 (0.005) (0.000) (0.000) (0.000) (0.000) 
urban -1.538*** 0.063*** -0.144*** 0.063*** 0.061*** 
 (0.234) (0.009) (0.022) (0.009) (0.009) 
regulation 0.249 0.052*** -0.055*** 0.050*** 0.051*** 
 (0.159) (0.006) (0.015) (0.006) (0.006) 
_cons 1.698* -0.572*** 3.769*** -0.497*** -0.500*** 
 (0.998) (0.037) (0.094) (0.046) (0.046) 
City FE √ √ √ √ √ 
Time FE √ √ √ √ √ 
N 3102 3102 3102 3102 3102 
adj. R2 0.961 0.937 0.948 0.937 0.937 

 

5.2. Heterogeneity analysis 

5.2.1. Heterogeneity for geographical location 

Considering significant disparities in foundational conditions and developmental statuses across regions, this 

study divides the sampled cities into three groups based on geographical locations: eastern, central, and western 

regions, and further categorizes them into northern and southern regions.This categorization aligns with Huang et 

al. (2021). The results of the regression analysis are presented in Table 6. 

In columns (1) to (3) of Table 6, substantial variations in the impacts of DIGE on ENI become apparent. The 

eastern region, benefiting from its advantageous geographical position, displays a higher degree of market openness, 

frequent technological exchanges, and trading activities. Moreover, advanced high-tech industries often establish 

and concentrate in the eastern region, attributed to the presence of prestigious universities and research 

institutions that provide abundant research talent and innovation vitality (Hao et al., 2023; Hong et al., 2023). 

Consequently, the eastern region exhibits a stronger capacity for embracing digital technologies, leading to a 

significantly greater reduction in ENI compared to the central and western regions. This finding aligns with existing 

literature (Zhang et al., 2023; Zhang, 2022). 

In columns (4) and (5), the presence of abundant coal resources in northern China has facilitated a resource-

intensive economic growth model, primarily centered on coal-fired power generation, which has given rise to 

environmental challenges stemming from excessive emissions. In contrast, the southern region, particularly the 

southeast coastal areas, adopted openness at an earlier stage, nurturing a mature business environment (Wang et 

al., 2022). Combined with government support, convenient transportation, and superior natural environments, the 

southern region has attracted high-tech industries, financial enterprises, and tourism sectors. Consequently, the 

impact of DIGE in reducing ENI is more pronounced in southern cities. 

Recognizing the strategic significance of the Yangtze River Economic Belt (YREB), we categorize our sample of 

cities into two groups: those located along the YREB (YREB=1) and those outside it (YREB=0). The regression 

results in columns (6) and (7) of Table 6 reveal a significantly more pronounced decline in ENI in cities situated 

along the YREB, attributed to the influence of DIGE. Compared to areas outside the YREB, these cities attract more 

foreign investment, leading to the introduction of advanced technologies and management practices (Shao et al., 
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2019; Zhu et al., 2017). This technical edge facilitates the adoption of new technologies, endowing the YREB region 

with improved capabilities, potential, and receptivity for digital economic development. 

Table 6. Heterogeneity for geographical location. 

 (1) (2) (3) (4) (5) (6) (7) 
 East Central West North South YREB=0 YREB=1 

DIGE 0.193*** 0.025 0.028** 0.028* 0.103*** 0.040*** 0.099*** 
 (0.022) (0.027) (0.012) (0.016) (0.013) (0.013) (0.015) 
DIGE2 -0.015*** -0.001 -0.002** -0.002* -0.007*** -0.003** -0.008*** 
 (0.002) (0.002) (0.001) (0.001) (0.001) (0.001) (0.001) 
pgdp -0.002 -0.009*** -0.000 -0.000 -0.003*** -0.002** -0.000 
 (0.001) (0.003) (0.001) (0.001) (0.001) (0.001) (0.001) 
pnd -0.004*** -0.001*** -0.003*** -0.003*** -0.003*** -0.003*** -0.002*** 
 (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 
fdi -0.141*** -0.023 -0.005 0.062 -0.244*** -0.081*** -0.099** 
 (0.033) (0.045) (0.068) (0.040) (0.031) (0.029) (0.049) 
fin 0.001 0.001** -0.000 -0.000 0.000 -0.000 0.002** 
 (0.001) (0.000) (0.000) (0.000) (0.000) (0.000) (0.001) 
urban 0.157*** 0.028** 0.011 -0.007 0.098*** 0.095*** -0.014 
 (0.016) (0.014) (0.014) (0.015) (0.011) (0.011) (0.014) 
regulation 0.059*** 0.054*** 0.024** 0.077*** 0.040*** 0.048*** 0.050*** 
 (0.010) (0.011) (0.009) (0.012) (0.007) (0.009) (0.007) 
_cons -1.012*** -0.408*** -0.331*** -0.527*** -0.657*** -0.500*** -0.635*** 
 (0.077) (0.101) (0.050) (0.064) (0.046) (0.049) (0.054) 
City FE √ √ √ √ √ √ √ 
Year FE √ √ √ √ √ √ √ 
N 1100 1089 913 1132 1969 1936 1166 
adj. R2 0.951 0.872 0.946 0.906 0.953 0.929 0.953 

 

5.2.2. Heterogeneity of city characteristics 

(1) Resource endowment heterogeneity 

,revious studies suggest that resource-rich regions often experience lower energy prices, reducing incentives 

for businesses to pursue technological innovation and decrease ENI. Wei et al. (2019) found that energy-intensive 

enterprises in coal-rich areas might lack motivation for technological progress, significantly impacting both 

individual enterprises and the region's overall ENI. To better understand this phenomenon, we follow Zhang et al. 

(2022) and categorize sampled cities into two groups: resource-based and non-resource-based cities. 

The findings in columns (1) and (2) of Table 6 show that the reduction in ENI due to DIGE is more pronounced 

in resource-based cities, consistent with existing literature (Meng et al., 2023). In the era of DIGE, resource-based 

cities face challenges like economic structural imbalances, limited capabilities to transition to alternative industries, 

and severe environmental degradation. Thus, while the digital industry in these cities holds significant potential for 

reducing ENI, it faces substantial obstacles (Hao et al., 2023). 

(2) Economic Development Heterogeneity 

To explore heterogeneity among cities with different economic development levels, we use the criteria 

proposed by Li et al. (2022), utilizing per capita GD,. We classify all sampled cities into high-economic-development 

cities (ED=1) and low-economic-development cities (ED=0) based on the median value. The results are shown in 

columns (3) and (4) of Table 6. 

An inverted U-shaped effect of DIGE on ENI is evident in both groups, but it is more pronounced in low-

economic-development cities. This disparity may be because these cities, striving for economic catch-up, rely more 
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on energy-intensive growth models. Furthermore, DIGE is still in its early stages in these cities, accentuating its 

negative impact on ENI (Wang et al., 2024). In contrast, high-economic-development cities have robust industrial 

foundations, abundant resources, and inherent advantages in data elements. They lead in various aspects of the 

digital economy ecosystem, including data center construction, content development, and data processing. 

Consequently, DIGE has a greater positive effect on reducing ENI in these cities. 

(3) Urban size heterogeneity 

Large cities are more likely to receive significant fiscal funds, serve as regional transportation hubs, and possess 

superior digital infrastructure. Consistent with previous scholarly work, we categorize sampled cities into three 

groups based on population size: large cities (population over 5 million), medium cities (1-5 million), and small 

cities (less than 1 million). The regression results are presented in Table 7, columns (5) to (7). 

The results in columns (5) to (7) of Table 6 indicate that the impact of DIGE on ENI is more significant in large 

cities, aligning with existing literature (Ren et al., 2021). Large cities have robust resource mobilization capabilities 

and intricate energy systems covering production, dispatch, and consumption. Additionally, large cities 

demonstrate higher prevalence and utilization rates of internet infrastructure. The agglomeration effects of digital 

technology applications, along with network effects, reduce the average cost of digital infrastructure deployment. 

At the same time, these factors facilitate convenient data collection, processing, and sharing. Consequently, digital 

technologies can effectively leverage their energy-saving and emission-reducing positive externalities, thereby 

accelerating the transition toward energy decarbonization. 

Table 7. Heterogeneity of cities characteristics. 

 (1) (2) (3) (4) (5) (6) (7) 
 Resource-based Non-resource-based ED=1 ED=0 Small Medium Large 
DIGE 0.077*** -0.034* 0.050*** 0.093*** 0.034 0.036*** 0.096*** 
 (0.012) (0.020) (0.017) (0.017) (0.074) (0.013) (0.019) 
DIGE2 -0.006*** -0.003* -0.014*** -0.004*** -0.001 -0.003*** -0.007*** 
 (0.001) (0.002) (0.001) (0.001) (0.006) (0.001) (0.001) 
pgdp -0.002* -0.001 -0.017*** -0.000 0.002 -0.001* -0.001 
 (0.001) (0.001) (0.004) (0.001) (0.002) (0.001) (0.002) 
pnd -0.003*** -0.003*** -0.002*** -0.004*** -0.004** -0.003*** -0.003*** 
 (0.000) (0.000) (0.000) (0.000) (0.002) (0.000) (0.000) 
fdi -0.087*** -0.188*** -0.054 -0.230*** 0.571** -0.098*** -0.110*** 
 (0.028) (0.048) (0.033) (0.037) (0.257) (0.028) (0.041) 
fin 0.000 0.000 0.000 -0.000* 0.002 0.000 0.003* 
 (0.000) (0.000) (0.001) (0.000) (0.002) (0.000) (0.002) 
urban 0.108*** 0.031*** 0.077*** 0.053*** -0.061* 0.116*** 0.065** 
 (0.014) (0.010) (0.019) (0.010) (0.034) (0.010) (0.030) 
regulation 0.060*** 0.028*** -0.010 0.053*** 0.014 0.049*** 0.065*** 
 (0.008) (0.009) (0.040) (0.007) (0.026) (0.007) (0.010) 
_cons -0.636*** -0.153** 0.148 -1.032*** -0.389 -0.482*** -0.707*** 
 (0.046) (0.073) (0.150) (0.061) (0.249) (0.048) (0.073) 
City FE √ √ √ √ √ √ √ 
Year FE √ √ √ √ √ √ √ 
N 1881 1221 1537 1533 123 1842 1088 
adj. R2 0.939 0.918 0.894 0.950 0.924 0.953 0.925 

 

6. Conclusion 

Using urban panel data from China covering the period from 2011 to 2021, this paper utilizes a fixed-effect 

model, a threshold model, and an intermediary effect model to examine the specific impact of DIGE on ENI, as well 
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as to explore the mechanisms of this impact at different levels. 

First, the relationship between DIGE and ENI exhibits an inverted U-shaped pattern, suggesting that urban ENI 

can be effectively lowered once DIGE attains a certain level. This finding contrasts with several existing studies (Guo 

et al., 2023; Hong et al., 2023; Matthess et al., 2023). These studies only investigated linear relationships among 

variables, overlooking potential nonlinear impacts. Second, the mechanism analysis reveals that DIGE affects ENI 

by accelerating GRI and promoting HTIA. Our findings further support existing research in this area (Sturgeon, 2021; 

Wang et al., 2022; Wurlod & Noailly, 2018). Finally, our study investigated the diverse impacts of DIGE on ENI across 

cities, taking into account their varied geographical locations and factor endowments. 

7. Policy Recommendation 

Drawing upon the findings discussed above, we present these recommendations: 

First, local governments are encouraged to actively promote and support local enterprises in accelerating the 

development of digital, energy-saving, and carbon-reducing services and products. Additionally, they should focus 

on enhancing the application of digital technology in energy carbon reduction devices. Furthermore, the 

government should strategically harness the unique advantages of digital technology to establish a standardized 

system for energy carbon reduction guided by the digital era. This systematic approach ensures that all stakeholders 

in energy production and consumption adhere to consistent guidelines, thereby offering effective institutional 

support for high-quality economic development with a focus on green and low-carbon practices. 

Second, this dual approach optimizes industrial structures for high efficiency and low consumption. 

Additionally, the government should increase investments and research efforts in GRI projects. Accelerating the 

digitalization of businesses closes the digital development gap among enterprises of varying scales. Financial and 

technological support should especially target small-scale enterprises with low production costs, ensuring the 

establishment of high-tech industrial clusters. This synergy effectively empowers sustained economic and social 

development. 

Third, central government should take regional differences into careful consideration during policy 

formulation. ,olicies should adapt to local conditions, fostering the development of biomass energy and exploring 

new energy sources such as geothermal and marine energy, while also establishing comprehensive nuclear power 

demonstration bases in an organized manner. This approach lays a solid foundation for promoting green, low-

carbon economic and social transformations. Additionally, policies should be tailored to support underdeveloped 

regions, narrowing the regional gap, and effectively harnessing the economic and social welfare benefits resulting 

from digital economic development. 

8. Limitations and Future Research 

Due to the diverse institutional backgrounds and economic environments among nations, our results may be 

more applicable to developing countries than to all countries. Future research could include comparative studies 

between emerging economies and developed nations to assess the applicability of our research model in various 

contexts. Second, although we measured the GRI and HTIA mechanisms, the impact of DIGE on ENI is multifaceted 

and may involve other distinct pathways. These pathways should be explored in future studies. 
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