Machine learning is playing an increasingly important role in the healthcare industry by transforming the way cancer is diagnosed and treated. By analyzing patient data, genomic data, and imaging data, machine learning algorithms can identify molecular signatures that distinguish cancer patients from healthy patients. Biomarkers that can accurately detect and diagnose cancer can be identified through analysis of these data sources. Additionally, personalized cancer therapies can be developed by identifying the most effective treatments based on individual patient characteristics and cancer type. Some of the machine learning techniques used for cancer biomarker discovery include deep learning and support vector machines, which can respectively identify complex patterns in data and classify data to identify relevant biomarkers. The benefits of using machine learning for cancer biomarker discovery are significant, including more precise and personalized treatments, improved patient outcomes, and the potential to transform cancer diagnosis and treatment. However, there are also challenges associated with using machine learning for cancer biomarker discovery, such as data collection and privacy issues, as well as the need for more powerful computational resources. This article explores the potential of machine learning in cancer biomarker discovery and argues that ongoing research in this field has the potential to revolutionize cancer diagnosis and treatment. Future research directions should focus on further developing machine learning algorithms and effective data collection and privacy protocols.
William, C.; Wangmo, C.; Ranjan, A. Unravelling the application of machine learning in cancer biomarker discovery. Cancer Insight, 2023, 2, 15. https://doi.org/10.58567/ci02010001
AMA Style
William C, Wangmo C, Ranjan A. Unravelling the application of machine learning in cancer biomarker discovery. Cancer Insight; 2023, 2(1):15. https://doi.org/10.58567/ci02010001
Chicago/Turabian Style
William, Carter; Wangmo, Choki; Ranjan, Anjali 2023. "Unravelling the application of machine learning in cancer biomarker discovery" Cancer Insight 2, no.1:15. https://doi.org/10.58567/ci02010001
APA style
William, C., Wangmo, C., & Ranjan, A. (2023). Unravelling the application of machine learning in cancer biomarker discovery. Cancer Insight, 2(1), 15. https://doi.org/10.58567/ci02010001
Kourou, K.; Exarchos, T.P.; Exarchos, K.P.; Karamouzis, M. V.; Fotiadis, D.I. Machine learning applications in cancer prognosis and prediction. Comput. Struct. Biotechnol. J.2015 ,13 ,8–17, doi:10.1016/j.csbj.2014.11.005.
Farina, E.; Nabhen, J.J.; Dacoregio, M.I.; Batalini, F.; Moraes, F.Y. An overview of artificial intelligence in oncology. Futur. Sci. OA 2022 ,8,doi:10.2144/fsoa-2021-0074.
Koh, D.-M.; Papanikolaou, N.; Bick, U.; Illing, R.; Kahn, C.E.; Kalpathi-Cramer, J.;Matos, C.; Mart í-Bonmat í,L.; Miles, A.; Mun, S.K.; et al. Artificial intelligence and machine learning in cancer imaging. Commun. Med. 2022 ,2,133, doi:10.1038/s43856-022-00199-0.
Tran, K.A.; Kondrashova, O.; Bradley, A.; Williams, E.D.; Pearson, J.V.; Waddell, N. Deep learning in cancer diagnosis, prognosis and treatment selection. Genome Med. 2021 ,13 ,152, doi:10.1186/s13073-021-00968-x.
Wang, S.; Wang, S.; Wang, Z. A survey on multi-omics-based cancer diagnosis using machine learning with the potential application in gastrointestinal cancer. Front. Med. 2023 ,9,doi:10.3389/fmed.2022.1109365.
Chen, Z.; Lin, L.; Wu, C.; Li, C.; Xu, R.; Sun, Y.Artificial intelligence for assisting cancer diagnosis and treatment in the era of precision medicine. Cancer Commun. 2021 ,41 ,1100 –1115, doi:10.1002/cac2.12215.
Johnson, K.B.; Wei, W.; Weeraratne, D.; Frisse, M.E.; Misulis, K.; Rhee, K.; Zhao, J.; Snowdon, J.L. Precision Medicine, AI, and the Future of Personalized Health Care. Clin. Transl. Sci. 2021 ,14 ,86 –93, doi:10.1111/cts.12884.
Hunter, B.; Hindocha, S.; Lee, R.W. The Role of Artificial Intelligence in Early Cancer Diagnosis. Cancers (Basel). 2022 ,14 ,1524, doi:10.3390/cancers14061524.
Hajjo, R.; Sabbah, D.A.; Bardaweel, S.K.; Tropsha, A. Identification of Tumor-Specific MRI Biomarkers Using Machine Learning (ML). Diagnostics 2021 ,11 ,742, doi:10.3390/diagnostics11050742.
Cruz, J.A.; Wishart, D.S. Applications of machine learning in cancer prediction and prognosis. Cancer Inform. 2007 , 2,59 –77.
Uddin, S.; Khan, A.; Hossain, M.E.; Moni, M.A. Comparing different supervised machine learning algorithms for disease prediction. BMC Med. Inform. Decis. Mak. 2019 ,19 ,281, doi:10.1186/s12911-019-1004-8.
Lynch, C.M.; van Berkel, V.H.; Frieboes, H.B. Application of unsupervised analysis techniques to lung cancer patient data. PLoS One 2017 ,12 ,e0184370, doi:10.1371/journal.pone.0184370.
Javaid, M.; Haleem, A.; Pratap Singh, R.; Suman, R.; Rab, S.Significance of machine learning in healthcare: Features, pillars and applications. Int. J.Intell. Networks 2022 ,3,58 –73, doi:10.1016/j.ijin.2022.05.002.
Ebrahim, M.; Sedky, A.A.H.; Mesbah, S. Accuracy Assessment of Machine Learning Algorithms Used to Predict Breast Cancer. Data 2023 ,8,35, doi:10.3390/data8020035.
Buda, M.; Saha, A.; Walsh, R.; Ghate, S.; Li, N.; Swiecicki, A.; Lo, J.Y.; Mazurowski, M.A. AData Set and Deep Learning Algorithm for the Detection of Masses and Architectural Distortions in Digital Breast Tomosynthesis Images. JAMA Netw. Open 2021 ,4,e2119100, doi:10.1001/jamanetworkopen.2021.19100.
Amann, J.; Blasimme, A.; Vayena, E.; Frey, D.; Madai, V.I. Explainability for artificial intelligence in healthcare: a multidisciplinary perspective. BMC Med. Inform. Decis. Mak. 2020 ,20 ,310, doi:10.1186/s12911-020-01332-6.
Sarker, I.H. Machine Learning: Algorithms, Real-World Applications and Research Directions. SN Comput. Sci. 2021 , 2,160, doi:10.1007/s42979-021-00592-x.
Rajkomar, A.; Hardt, M.; Howell, M.D.; Corrado, G.; Chin, M.H. Ensuring Fairness in Machine Learning to Advance Health Equity. Ann. Intern. Med. 2018 ,169 ,866, doi:10.7326/M18-1990.
Gianfrancesco, M.A.; Tamang, S.; Yazdany, J.; Schmajuk, G. Potential Biases in Machine Learning Algorithms Using Electronic Health Record Data. JAMA Intern. Med. 2018 ,178 ,1544, doi:10.1001/jamainternmed.2018.3763.
Pai, R.K.; Van Booven, D.J.; Parmar, M.; Lokeshwar, S.D.; Shah, K.; Ramasamy, R.; Arora, H. A review of current advancements and limitations of artificial intelligence in genitourinary cancers. Am. J.Clin. Exp. Urol. 2020 ,8, 152 –162.
Davenport, T.; Kalakota, R. The potential for artificial intelligence in healthcare. Futur. Healthc. J.2019 ,6,94 –98, doi:10.7861/futurehosp.6-2-94.
Ahuja, A.S. The impact of artificial intelligence in medicine on the future role of the physician. PeerJ 2019 ,7,e7702, doi:10.7717/peerj.7702.