Cancer, a pervasive threat to human health, presents formidable challenges to traditional treatment approaches. Tumor immunotherapy has emerged as a promising strategy for combating malignancies by bolstering the body's immune response to thwart tumor metastasis and recurrence. Nonetheless, the intricacies of tumors, patient heterogeneity, and the presence of tumor-immunosuppressive microenvironments have limited the overall efficacy of immunotherapy, achieving only approximately a 20% success rate. In recent years, nanomaterials have garnered increasing attention in the realm of tumor immunotherapy due to their inherent advantages, such as excellent biocompatibility, precise targeting, and controlled drug release. Nanomaterials empower immunostimulatory molecules and therapeutic agents with the ability to specifically target tumors, amplify drug accumulation at tumor sites, facilitate local immune modulation, alleviate immunosuppressive microenvironments, and thereby enhance the effectiveness of tumor immunotherapy. This review provides an overview of the current state of immunotherapy and offers insights into the ongoing research progress surrounding various nanomaterials aimed at augmenting the efficacy of immunotherapy.
Wan, X.; Jiang, M.; Madan, S. Research progress of nanomedicine for tumor immunotherapy. Cancer Insight, 2024, 3, 31. https://doi.org/10.58567/ci03010005
AMA Style
Wan X, Jiang M, Madan S. Research progress of nanomedicine for tumor immunotherapy. Cancer Insight; 2024, 3(1):31. https://doi.org/10.58567/ci03010005
Chicago/Turabian Style
Wan, Xingyi; Jiang, Mengyan; Madan, Shriya 2024. "Research progress of nanomedicine for tumor immunotherapy" Cancer Insight 3, no.1:31. https://doi.org/10.58567/ci03010005
APA style
Wan, X., Jiang, M., & Madan, S. (2024). Research progress of nanomedicine for tumor immunotherapy. Cancer Insight, 3(1), 31. https://doi.org/10.58567/ci03010005
Article Metrics
Article Access Statistics
References
Topalian S L, Weiner G J, Pardoll D M. (2011). Cancer immunotherapy comes of age. J Clin Oncol 29(36), 4828-4836. https://doi.org/10.1200/JCO.2011.38.0899
Galluzzi L, Vacchelli E, Bravo-san Pedro J M, et al. (2014). Classification of current anticancer immunotherapies. Oncotarget 5(24), 12472-12508. https://doi.org/10.18632/oncotarget.2998
Rosenberg S A, Restifo N P. (2015). Adoptive cell transfer as personalized immunotherapy for human cancer. Science 348(6230), 62-68. https://doi.org/10.1126/science.aaa4967
Parker B S, Rautela J, Hertzog P J. (2016). Antitumour actions of interferons: implications for cancer therapy. Nat Rev Cancer 16(3), 131-144. https://doi.org/10.1038/nrc.2016.14
Rosenberg S A. (2014). IL-2: the first effective immunotherapy for human cancer. J Immunol 192(12), 5451-5458. https://doi.org/10.4049/jimmunol.1490019
Asmana Ningrum R. (2014). Human interferon alpha-2b: a therapeutic protein for cancer treatment. Scientifica (Cairo) 2014, 970315. https://doi.org/10.1155/2014/970315
Robert C, Schachter J, Long G V, et al. (2015). Pembrolizumab versus ipilimumab in advanced melanoma. N Engl J Med 372(26), 2521-2532. https://doi.org/10.1056/nejmoa1503093
Borghaei H, Paz-ares L, Horn L, et al. (2015). Nivolumab versus docetaxel in advanced nonsquamous non-small-cell lung cancer. N Engl J Med 373(17), 1627-1639. https://doi.org/10.1056/NEJMoa1507643
Ma W J, Gilligan B M, Yuan J D, et al. (2016). Current status and perspectives in translational biomarker research for PD-1/PD-L1 immune checkpoint blockade therapy. J Hematol Oncol 9(1), 47. https://doi.org/10.1186/s13045-016-0277-y
Ledford H. (2013). Immunotherapy's cancer remit widens. Nature 497(7451), 544. https://doi.org/10.1038/497544a
Cheung AS, Zhang DKY, Koshy ST, Mooney DJ. (2018). Scaffolds that mimic antigen-presenting cells enable ex vivo expansion of primary T cells. Nat Biotechnol 36(2), 160-9. https://doi.org/10.1038/nbt.4047
Lee JY, Kim MK, Nguyen TL, Kim J. (2020). Hollow Mesoporous Silica Nanoparticles with Extra-Large Mesopores for Enhanced Cancer Vaccine. ACS Appl Mater Interfaces 12(31), 34658-66. https://doi.org/10.1021/acsami.0c09484
Vallhov H, Gabrielsson S, Strùmme M, Scheynius A, Garcia Bennett AE. (2007). Mesoporous silica particles induce size dependent effects on human dendritic cells. Nano Lett 7(12), 3576-82. https://doi.org/10.1021/nl0714785
Nguyen TL, Choi Y, Kim J. (2019). Mesoporous Silica as a Versatile Platform for Cancer Immunotherapy. Adv Mater 31(34), 1803953. https://doi.org/10.3390/bios12020109
Yang H, Liu HS, Hou W, Gao JX, Duan Y, Wei D, et al. (2020). An NIR-responsive mesoporous silica nanosystem for synergetic photothermal-immunoenhancement therapy of hepatocellular carcinoma. J Mater Chem B 8(2), 251-9. https://doi.org/10.1039/d0tb90040k
Xu C, Nam J, Hong H, Xu Y, Moon JJ. (2019). Positron Emission Tomography-Guided Photodynamic Therapy with Biodegradable Mesoporous Silica Nanoparticles for Personalized Cancer Immunotherapy. ACS Nano 13(10), 12148-61. https://doi.org/10.1021/acsnano.9b06691
Yang G, Xu L, Xu J, Zhang R, Song G, Chao Y, et al. (2018). Smart Nanoreactors for pH-Responsive Tumor Homing, Mitochondria-Targeting, and Enhanced Photodynamic Immunotherapy of Cancer. Nano Letter 18(4), 2475-84. https://doi.org/10.1021/acs.nanolett.8b00040
Yu X, Gao D, Gao L, et al. (2017). Inhibiting metastasis and preventing tumor relapse by triggering host immunity with tumor-targeted photodynamic therapy using photosensitizer-loaded functional nanographenes. ACS Nano 11(10), 10147-10158. https://doi.org/10.1021/acsnano.7b04736
Lebre F, Boland JB, Gouveia P, Gorman AL, Lundahl MLE, R IL, et al. (2020). Pristine graphene induces innate immune training. Nanoscale 12(20), 11192-200. https://doi.org/10.1039/c9nr09661b
Ding Z, Luo N, Yue H, Gao Y, Ma G, Wei W. (2020). In vivo immunological response of exposure to PEGylated graphene oxide via intraperitoneal injection. J Mater Chem B 8(31), 6845-56. https://doi.org/10.1039/d0tb00499e
Tao Y, Ju E, Ren J, Qu X. (2014). Immunostimulatory oligonucleotides loaded cationic graphene oxide with photothermally enhanced immunogenicity for photothermal/immune cancer therapy. Biomaterials 35(37), 9963-71. https://doi.org/10.1016/j.biomaterials.2014.08.036
Hulsmans M, Sam F, Nahrendorf M. (2016). Monocyte and macrophage contributions to cardiac remodeling. J Mol Cell Cardiol 93, 149-55. https://doi.org/10.1016/j.yjmcc.2015.11.015
Gombozhapova A, Rogovskaya Y, Shurupov V, Rebenkova M, Kzhyshkowska J, Popov SV, et al. (2017). Macrophage activation and polarization in post-infarction cardiac remodeling. J Biomed Sci 24(1), 13. https://doi.org/10.1186/s12929-017-0322-3
Wu C, Wang L, Tian Y, Guan X, Liu Q, Li S, et al. (2018). “Triple Punch” Anticancer Strategy Mediated by Near-Infrared Photosensitizer/CpG Oligonucleotides Dual-Dressed and Mitochondria-Targeted Nanographene. ACS Appl Mater Interfaces 10(8), 6942-55. https://doi.org/10.1021/acsami.7b18896
Wang BH, AN JY, Zhang H F, et al. (2018). Personalized cancer immunotherapy via transporting endogenous tumor antigens to lymph nodes mediated by nano Fe3O4 Small. 14(38), e1801372. https://doi.org/10.1002/smll.201801372
Zhang D, Wu TT, Qin XY, et al. (2019). Intracellularly generated immunological gold nanoparticles for combinatorial photothermal therapy and immunotherapy against tumor. Nano Lett 19(9), 6635-6646. https://doi.org/10.1021/acs.nanolett.9b02903
ZOGLMEIER C, BAUER H, NOERENBERG D, et al. (2011). CpG blocks immunosuppression by myeloid-derived suppressor cells in tumorbearing mice. Clin Cancer Res 17(7), 1765-1775. https://doi.org/10.1158/1078-0432.CCR-10-2672
Li L, Yang S, Song L, et al. (2018). An endogenous vaccine based on fluorophores and multivalent immunoadjuvants regulates tumor microenvironment for synergistic photothermal and immunotherapy. Theranostics 8(3), 860-873. https://doi.org/10.7150/thno.19826
Park J, Wrzesinski S H, Stern E, et al. 2012). Combination delivery of TGF- β inhibitor and IL-2 by nanoscale liposomal polymeric gels enhances tumour immunotherapy. Nat Mater 11(10), 895-905. https://doi.org/10.1038/nmat3355
Zhou P, Qin J Q, Zhou C, et al. (2019). Multifunctional nanoparticles based on a polymeric copper Chelator for combination treatment of metastatic breast cancer. Biomaterials 195, 86-99. https://doi.org/10.1016/j.biomaterials.2019.01.007
Chen Q, Chen J, Yang Z, et al. (2019). Nanoparticle-enhanced radiotherapy to trigger robust cancer immunotherapy. Adv Mater 31(10), e1802228. https://doi.org/10.1002/adma.201802228
Su Z W, Xiao Z C, Wang Y, et al. (2020). Codelivery of anti-PD-1 antibody and paclitaxel with matrix metalloproteinase and pH dualsensitive micelles for enhanced tumor chemoimmunotherapy. Small 16(7), e1906832. https://doi.org/10.1002/smll.201906832
Shae D, Becker K W, Christov P, et al. (2019). Endosomolytic polymersomes increase the activity of cyclic dinucleotide STING agonists to enhance cancer immunotherapy. Nat Nanotechnol 14(3), 269-278. https://doi.org/10.1038/s41565-018-0342-5
Chao Y, Chen Q, Liu Z, et al. (2020). Smart injectable hydrogels for cancer immunotherapy. Adv Funct Mater 30(2), 1902785. https://doi.org/10.1002/adfm.201902785
Jin H L, Wan C, Zou Z W, et al. (2018). Tumor ablation and therapeutic immunity induction by an injectable peptide hydrogel. ACS Nano 12(4), 3295-3310. https://doi.org/10.1021/acsnano.7b08148
Bencherif S A, Warren Sands R, ALI O A, et al. (2015). Injectable cryogel-based whole-cell cancer vaccines. Nat Commun 6, 7556. https://doi.org/10.1038/ncomms8556
Wang H M, Luo Z C, Wang Y Z, et al. (2016). Enzyme-catalyzed formation of supramolecular hydrogels as promising vaccine adjuvants. Adv Funct Mater 26(11), 1822-1829. https://doi.org/10.1002/adfm.201505188
Luo Z C, Wu Q J, Yang C B, et al. (2017). A powerful CD8+ T-cell stimulating D-Tetra-peptide hydrogel as a very promising vaccine adjuvant. Adv Mater 29(5), 1601776. https://doi.org/10.1002/adma.201601776
Wang Z Y, Shang Y N, Tan Z Q, et al. (2020). A supramolecular protein chaperone for vaccine delivery. Theranostics 10(2), 657-670. https://doi.org/10.7150/thno.39132
Sheth T, Seshadri S, Prileszky T, et al. (2020). Multiple nanoemulsions. Nat Rev Mater 5(3), 214-228. https://doi.org/10.1038/s41578-019-0161-9
Jia L, Pang M H, Fan M, et al. (2020). A pH-responsive Pickering Nanoemulsion for specified spatial delivery of Immune Checkpoint Inhibitor and Chemotherapy agent to Tumors. Theranostics 10(22), 9956-9969. https://doi.org/10.7150/thno.46089
Hu C M, Zhang L, ARYAL S, et al. (2011). Erythrocyte membranecamouflaged polymeric nanoparticles as a biomimetic delivery platform. Proc Natl Acad Sci U S 108(27), 10980-10985. https://doi.org/10.1073/pnas.1106634108
Kroll A V, Fang R H, JIANG Y, et al. (2017). Nanoparticulate delivery of cancer cell membrane elicits multiantigenic antitumor immunity. Adv Mater 29(47), 1703969. https://doi.org/10.1002/adma.201703969
Deng G J, Sun Z H, Li S P, et al. (2018). Cell-membrane immunotherapy based on natural killer cell membrane coated nanoparticles for the effective inhibition of primary and abscopal tumor growth. ACS Nano 12(12), 12096-12108. https://doi.org/10.1021/acsnano.8b05292
Cao H Q, Dan Z L, He X Y, et al. (2016). Liposomes coated with isolated macrophage membrane can target lung metastasis of breast cancer. ACS Nano 10(8), 7738-7748. https://doi.org/10.1021/acsnano.6b03148
Li W, Yang J, Luo L, et al. (2019). Targeting photodynamic and photothermal therapy to the endoplasmic reticulum enhances immunogenic cancer cell death. Nat Commun 10(1), 3349. https://doi.org/10.1038/s41467-019-11269-8
Wu C, Guan X, Xu J, et al. (2019). Highly efficient cascading synergy of cancer photo-immunotherapy enabled by engineered graphene quantum dots/photosensitizer/CpG oligonucleotides hybrid nanotheranostics. Biomaterials 205, 106-119. https://doi.org/10.1016/j.biomaterials.2019.03.020
Barillet S, Fattal E, Mura S, et al. (2019). Immunotoxicity of poly (lactic-co-glycolic acid) nanoparticles: influence of surface properties on dendritic cell activation. Nanotoxicology 13(5), 606-622. https://doi.org/10.1080/17435390.2018.1564078
Steenblock E R, Fahmy T M. (2008). A comprehensive platform for Ex Vivo T-cell expansion based on biodegradable polymeric artificial antigen-presenting cells. Mol Ther 16(4), 765-772. https://doi.org/10.1038/mt.2008.11
Freeman G J, Sharpe A H, Keir M E, et al. (2008). PD-1 and its ligands in tolerance and immunity. Annu Rev Immunol 26(1), 677-704. https://doi.org/10.1146/annurev.immunol.26.021607.090331
Wang J C, Sun X, Ma Q, et al. (2018). Metformin's antitumour and anti-angiogenic activities are mediated by skewing macrophage polarization. J Cell Mol Med 22(8), 3825-3836. https://doi.org/10.1111/jcmm.13655
Ledo A M, Sasso M S, Bronte V, et al. (2019). Co-delivery of RNAi and chemokine by polyarginine nanocapsules enables the modulation of myeloid-derived suppressor cells. J Controlled Release 295, 60-73. https://doi.org/10.1016/j.jconrel.2018.12.041
Burkert S C, Shurin G V, White D L, et al. (2018). Targeting myeloid regulators by paclitaxel-loaded enzymatically degradable nanocups. Nanoscale 10(37), 17990-18000. https://doi.org/10.1039/C8NR04437F
Lpez-Soto, Alejandro, Gonzalez S, Smyth M J, et al. (2017). Control of metastasis by NK Cells. Cancer Cell 32(2), 135-154. https://doi.org/10.1016/j.ccell.2017.06.009
Ji T, Lang J, Ning B, et al. (2019). Enhanced natural killer cell immunotherapy by rationally assembling Fc fragments of antibodies onto tumor membranes. Adv Mater 31(6), e1804395. https://doi.org/10.1002/adma.201804395