Does Internet Development Put Pressure on Energy-Saving Potential for Environmental Sustainability? Evidence from China
Abstract
With the development of information technology and its application in environmental governance, the role of the internet in improving energy efficiency and reducing energy-saving potential (ESP) has attracted more attention. In this study, the slack-based model (SBM) and the unexpected model, along with the entropy method, were applied to measure China's energy-saving potential and internet development. Further, we empirically analyzed the direct effect, mediating effect, threshold effect, and regional heterogeneity of the internet on ESP. Our conclusion shows that there is a significant spatial correlation between internet penetration and ESP. Internet penetration has become an important tool for reducing ESP, but this effect shows regional heterogeneity. Human capital accumulation, financial development, and industrial upgrading are important influencing mechanisms, but indirect effects are weaker than direct effects. The impact of internet penetration on ESP is non-linear, and for improving human capital accumulation, financial development, and industrial upgrading, the role of internet popularization in energy conservation is more obvious.
1. Introduction
2. Literature review
3. Mechanism analysis
4. Measurement of energy-saving potential
5. Methodology and data
5.1.1. Spatial Durbin model
5.1.2. Mediation effect models
5.1.3. Threshold effect model
5.2.1. Energy-saving potential
5.2.2. Internet development
5.2.3. Mediation variable
5.2.4. Control variables
6. Empirical results
6.1.1. Spatial correlation test
6.1.2. Results of the spatial effect
7. Conclusions and policy recommendation
Funding Statement
Acknowledgments
Declaration of Competing Interest
References
- Barro, R. J., & Lee, J. W. (1994). Sources of economic growth. In Carnegie-Rochester conference series on public policy (Vol. 40, pp. 1-46). North-Holland. https://doi.org/10.1016/0167-2231(94)90002-7 [Google Scholar ][Crossref]
- Bartlett, D., & Trifilova, A. (2010). Green technology and eco‐innovation: Seven case‐studies from a Russian manufacturing context. Journal of Manufacturing Technology Management. https://doi.org/10.1108/17410381011086757 [Google Scholar ][Crossref]
- Carlsson, B. (2004). The Digital Economy: what is new and what is not?. Structural Change and Economic Dynamics, 15(3), 245-264. https://doi.org/10.1016/j.strueco.2004.02.001 [Google Scholar ][Crossref]
- Chen, X., Gong, X., Li, D., & Zhang, J. (2019). Can information and communication technology reduce CO2 emission? A quantile regression analysis. Environmental Science and Pollution Research, 26(32), 32977-32992. https://doi.org/10.1007/s11356-019-06380-8 [Google Scholar ][Crossref]
- Chen, Z., Li, Y., Wu, Y., & Luo, J. (2017). The transition from traditional banking to mobile internet finance: an organizational innovation perspective-a comparative study of Citibank and ICBC. Financial Innovation, 3(1), 1-16. https://doi.org/10.1186/s40854-017-0062-0 [Google Scholar ][Crossref]
- Cheng, S., Fan, W., Meng, F., Chen, J., Cai, B., Liu, G., ... & Yang, Z. (2020). Toward low-carbon development: Assessing emissions-reduction pressure among Chinese cities. Journal of Environmental Management, 271, 111036. https://doi.org/10.1016/j.jenvman.2020.111036 [Google Scholar ][Crossref]
- Cheong, T. S., & Wu, Y. (2014). The impacts of structural transformation and industrial upgrading on regional inequality in China. China Economic Review, 31, 339-350. https://doi.org/10.1016/j.chieco.2014.09.007 [Google Scholar ][Crossref]
- Ciocoiu, C. N. (2011). Integrating digital economy and green economy: opportunities for sustainable development. Theoretical and Empirical Researches in Urban Management, 6(1), 33-43. http://www.jstor.org/stable/24873273 [Google Scholar ]
- Dong, F., Li, Y., Qin, C., & Sun, J. (2021). How industrial convergence affects regional green development efficiency: A spatial conditional process analysis. Journal of Environmental Management, 300, 113738. https://doi.org/10.1016/j.jenvman.2021.113738 [Google Scholar ][Crossref]
- Du, M., Hou, Y., Zhou, Q., & Ren, S. (2022). Going green in China: How does digital finance affect environmental pollution? Mechanism discussion and empirical test. Environmental Science and Pollution Research. 29, 89996–90010. https://doi.org/10.1007/s11356-022-21909-0 [Google Scholar ][Crossref]
- Fan, J., & Xiao, Z. (2021). Analysis of spatial correlation network of China’s green innovation. Journal of Cleaner Production, 299, 126815. https://doi.org/10.1016/j.jclepro.2021.126815 [Google Scholar ][Crossref]
- Hansen, B. E. (1999). Threshold effects in non-dynamic panels: Estimation, testing, and inference. Journal of Econometrics, 93(2), 345-368. https://doi.org/10.1016/S0304-4076(99)00025-1 [Google Scholar ][Crossref]
- Hao, Y., Ba, N., Ren, S., & Wu, H. (2021). How does international technology spillover affect China's carbon emissions? A new perspective through intellectual property protection. Sustainable Production and Consumption, 25, 577-590. https://doi.org/10.1016/j.spc.2020.12.008 [Google Scholar ][Crossref]
- Hao, Y., Huang, J., Guo, Y., Wu, H., & Ren, S. (2022). Does the legacy of state planning put pressure on ecological efficiency? Evidence from China. Business Strategy and the Environment. 31(7), 3100-3121. https://doi.org/10.1002/bse.3066 [Google Scholar ][Crossref]
- He, W., Li, E., & Cui, Z. (2021). Evaluation and influence factor of green efficiency of China’s agricultural innovation from the perspective of technical transformation. Chinese Geographical Science, 31(2), 313-328. https://doi.org/10.1007/s11769-021-1192-x [Google Scholar ][Crossref]
- Hu, J. L., Chen, Y. C., & Yang, Y. P. (2022). The development and issues of energy-ICT: a review of literature with economic and managerial viewpoints. Energies, 15(2), 594. https://doi.org/10.3390/en15020594 [Google Scholar ][Crossref]
- Kapitonov, I. A., Filosofova, T. G., & Korolev, V. G. (2019). Development of digital economy in the energy industry-specific modernization. International Journal of Energy Economics and Policy, 9(4), 273. https://doi.org/10.32479/ijeep.8013 [Google Scholar ][Crossref]
- Khan, H., Weili, L., & Khan, I. (2022). Examining the effect of information and communication technology, innovations, and renewable energy consumption on CO2 emission: evidence from BRICS countries. Environmental Science and Pollution Research, 29, 47696–47712. https://doi.org/10.1007/s11356-022-19283-y [Google Scholar ][Crossref]
- Kim, J., Park, J. C., & Komarek, T. (2021). The impact of Mobile ICT on national productivity in developed and developing countries. Information & Management, 58(3), 103442. https://doi.org/10.1016/j.im.2021.103442 [Google Scholar ][Crossref]
- Li, Q., Lau, R. W., Shih, T. K., & Li, F. W. (2008). Technology supports for distributed and collaborative learning over the internet. ACM Transactions on Internet Technology (TOIT), 8(2), 1-24. https://doi.org/10.1145/1323651.1323656 [Google Scholar ][Crossref]
- Li, T., & Fu, W. (2015). Spatial processes of regional innovation in Guangdong Province, China: empirical evidence using a spatial panel data model. Asian Journal of Technology Innovation, 23(3), 304-320. https://doi.org/10.1080/19761597.2015.1120499 [Google Scholar ][Crossref]
- Litvinenko, V. S. (2020). Digital economy as a factor in the technological development of the mineral sector. Natural Resources Research, 29(3), 1521-1541. https://doi.org/10.1007/s11053-019-09568-4 [Google Scholar ][Crossref]
- Liu, Y., Shao, X., Tang, M., & Lan, H. (2021). Spatio-temporal evolution of green innovation network and its multidimensional proximity analysis: Empirical evidence from China. Journal of Cleaner Production, 283, 124649. https://doi.org/10.1016/j.jclepro.2020.124649 [Google Scholar ][Crossref]
- Luo, Q., Miao, C., Sun, L., Meng, X., & Duan, M. (2019). Efficiency evaluation of green technology innovation of China's strategic emerging industries: An empirical analysis based on Malmquist-data envelopment analysis index. Journal of Cleaner Production, 238, 117782. https://doi.org/10.1016/j.jclepro.2019.117782 [Google Scholar ][Crossref]
- Ma, F., Chen, L. H., Hu, Q. Q., & Luo, Y. P. (2014). Comparison analysis and strategies on the regional internet industry development in China. In Applied Mechanics and Materials (Vol. 687, pp. 2087-2091). Trans Tech Publications Ltd. https://doi.org/10.4028/www.scientific.net/AMM.687-691.2087 [Google Scholar ][Crossref]
- Miao, C. L., Duan, M. M., Zuo, Y., & Wu, X. Y. (2021). Spatial heterogeneity and evolution trend of regional green innovation efficiency--an empirical study based on panel data of industrial enterprises in China's provinces. Energy Policy, 156, 112370. https://doi.org/10.1016/j.enpol.2021.112370 [Google Scholar ][Crossref]
- Peng, W., Yin, Y., Kuang, C., Wen, Z., & Kuang, J. (2021). Spatial spillover effect of green innovation on economic development quality in China: Evidence from a panel data of 270 prefecture-level and above cities. Sustainable Cities and Society, 69, 102863. https://doi.org/10.1016/j.scs.2021.102863 [Google Scholar ][Crossref]
- Powell, M. K. (2004). Preserving Internet freedom: Guiding principles for the industry. J. on Telecomm. & High Tech. L., 3, 5. [Google Scholar ]
- Price, L., Wang, X., & Yun, J. (2010). The challenge of reducing energy consumption of the Top-1000 largest industrial enterprises in China. Energy Policy, 38(11), 6485-6498. https://doi.org/10.1016/j.enpol.2009.02.036 [Google Scholar ][Crossref]
- Qian, Z. H. A. N. G. (2015). Impact of Market-based Incentive Environmental Regulations on Different Types of Technology Innovation and Regional Heterogeneity. Industrial Economic Review, (2), 5. [Google Scholar ]
- Ren, S., Hao, Y., & Wu, H. (2022a). How does green investment affect environmental pollution? Evidence from China. Environmental and Resource Economics, 81(1), 25-51. https://doi.org/10.1007/s10640-021-00615-4 [Google Scholar ][Crossref]
- Ren, S., Hao, Y., & Wu, H. (2022b). The role of outward foreign direct investment (OFDI) on green total factor energy efficiency: Does institutional quality matters? Evidence from China. Resources Policy, 76, 102587. https://doi.org/10.1016/j.resourpol.2022.102587 [Google Scholar ][Crossref]
- Ren, S., Hao, Y., Xu, L., Wu, H., & Ba, N. (2021). Digitalization and energy: How does internet development affect China's energy consumption? Energy Economics, 98, 105220. https://doi.org/10.1016/j.eneco.2021.105220 [Google Scholar ][Crossref]
- Shahnazi, R., & Dehghan Shabani, Z. (2019). The effects of spatial spillover information and communications technology on carbon dioxide emissions in Iran. Environmental Science and Pollution Research, 26(23), 24198-24212. https://doi.org/10.1007/s11356-019-05636-7 [Google Scholar ][Crossref]
- Shen, J. (2004). Population growth, ecological degradation and construction in the western region of China. Journal of Contemporary China, 13(41), 637-661. https://doi.org/10.1080/1067056042000281413 [Google Scholar ][Crossref]
- Shrouf, F., Ordieres, J., & Miragliotta, G. (2014, December). Smart factories in Industry 4.0: A review of the concept and of energy management approached in production based on the Internet of Things paradigm. In 2014 IEEE international conference on industrial engineering and engineering management (pp. 697-701). IEEE. [Google Scholar ]
- Smith, D., & Hardaker, G. (2000). E-learning innovation through the implementation of an internet supported learning environment. Journal of Educational Technology & Society, 3(3), 422-432. https://www.jstor.org/stable/jeductechsoci.3.3.422 [Google Scholar ]
- Tone, K. (2001). A slacks-based measure of efficiency in data envelopment analysis. European Journal of Operational Research, 130(3), 498-509. https://doi.org/10.1016/S0377-2217(99)00407-5 [Google Scholar ][Crossref]
- Tone, K. (2002). A strange case of the cost and allocative efficiencies in DEA. Journal of the Operational Research Society, 53(11), 1225-1231. https://doi.org/10.1057/palgrave.jors.2601438 [Google Scholar ][Crossref]
- Tone, K. (2004). Dealing with undesirable outputs in DEA: A slacks-based measure (SBM) approach. Presentation At NAPW III, Toronto, 44-45. [Google Scholar ]
- Vlasov, A. I., Shakhnov, V. A., Filin, S. S., & Krivoshein, A. I. (2019). Sustainable energy systems in the digital economy: concept of smart machines. Entrepreneurship and Sustainability Issues, 6(4), 1975. http://doi.org/10.9770/jesi.2019.6.4(30) [Google Scholar ][Crossref]
- Wan, J., Jiang, Q., & Xie, L. (2017). Research on risk factors of entrepreneurship in Internet industry with the grounded theory. WHICEB 2017 PROCEEDINGS. https://aisel.aisnet.org/whiceb2017/58/ [Google Scholar ]
- Wu, H., Hao, Y., & Ren, S. (2020). How do environmental regulation and environmental decentralization affect green total factor energy efficiency: Evidence from China. Energy Economics, 91, 104880. https://doi.org/10.1016/j.eneco.2020.104880 [Google Scholar ][Crossref]
- Wu, H., Hao, Y., Ren, S., Yang, X., & Xie, G. (2021a). Does internet development improve green total factor energy efficiency? Evidence from China. Energy Policy, 153, 112247. https://doi.org/10.1016/j.enpol.2021.112247 [Google Scholar ][Crossref]
- Wu, H., Xue, Y., Hao, Y., & Ren, S. (2021b). How does internet development affect energy-saving and emission reduction? Evidence from China. Energy Economics, 103, 105577. https://doi.org/10.1016/j.eneco.2021.105577 [Google Scholar ][Crossref]
- Wu, J. (2020). Research on the Impact of Technological Innovation on Environmental Pollution-Based on the Moderating Effect of Internet Development. In E3S Web of Conferences (Vol. 143, p. 02054). EDP Sciences. https://doi.org/10.1051/e3sconf/202014302054 [Google Scholar ][Crossref]
- Yamakami, T. (2008, July). Business model engineering analysis on mobile client-side software platform strategies. In 2008 7th International Conference on Mobile Business (pp. 59-64). IEEE. [Google Scholar ]
- Yang, X., Wu, H., Ren, S., Ran, Q., & Zhang, J. (2021). Does the development of the internet contribute to air pollution control in China? Mechanism discussion and empirical test. Structural Change and Economic Dynamics, 56, 207-224. https://doi.org/10.1016/j.strueco.2020.12.001 [Google Scholar ][Crossref]
- Yang, Y., Guo, H., Chen, L., Liu, X., Gu, M., & Ke, X. (2019). Regional analysis of the green development level differences in Chinese mineral resource-based cities. Resources Policy, 61, 261-272. https://doi.org/10.1016/j.resourpol.2019.02.003 [Google Scholar ][Crossref]
- Zeng, J., Škare, M., & Lafont, J. (2021). The co-integration identification of green innovation efficiency in Yangtze River Delta region. Journal of Business Research, 134, 252-262. https://doi.org/10.1016/j.jbusres.2021.04.023 [Google Scholar ][Crossref]
- Zhang, J., Cheng, M., Wei, X., Gong, X., & Zhang, S. (2019). Internet use and the satisfaction with governmental environmental protection: Evidence from China. Journal of Cleaner Production, 212, 1025-1035. https://doi.org/10.1016/j.jclepro.2018.12.100 [Google Scholar ][Crossref]
- Zhang, J., Ouyang, Y., Ballesteros-Pérez, P., Li, H., Philbin, S. P., Li, Z., & Skitmore, M. (2021). Understanding the impact of environmental regulations on green technology innovation efficiency in the construction industry. Sustainable Cities and Society, 65, 102647. https://doi.org/10.1016/j.scs.2020.102647 [Google Scholar ][Crossref]
- Zhou, Q., Du, M., & Ren, S. (2022). How Government Corruption and Market Segmentation Affect Green Total Factor Energy Efficiency in the Post-COVID-19 Era: Evidence From China. Frontiers in Energy Research, 10. https://doi.org/10.3389/fenrg.2022.878065 [Google Scholar ][Crossref]
- Zhou, X., Yu, Y., Yang, F., & Shi, Q. (2021). Spatial-temporal heterogeneity of green innovation in China. Journal of Cleaner Production, 282, 124464. https://doi.org/10.1016/j.jclepro.2020.124464 [Google Scholar ][Crossref]
- Zia, A. (2016). Measurement of Energy Consumption of ICT Solutions Applied for Improving Energy Efficiency in Transport Sector. https://urn.fi/URN:NBN:fi:tty-201611264804 [Google Scholar ]
Province | 2006 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | Mean | Rank |
Beijing | 0.433 | 0.321 | 0.285 | 0.124 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.097 | 29 |
Tianjin | 0.524 | 0.500 | 0.476 | 0.452 | 0.431 | 0.398 | 0.383 | 0.290 | 0.251 | 0.000 | 0.023 | 0.000 | 0.311 | 24 |
Hebei | 0.715 | 0.710 | 0.705 | 0.701 | 0.696 | 0.684 | 0.662 | 0.627 | 0.598 | 0.572 | 0.549 | 0.522 | 0.645 | 8 |
Liaoning | 0.603 | 0.601 | 0.598 | 0.596 | 0.592 | 0.578 | 0.554 | 0.475 | 0.446 | 0.426 | 0.381 | 0.344 | 0.516 | 12 |
Shanghai | 0.415 | 0.386 | 0.335 | 0.303 | 0.291 | 0.237 | 0.186 | 0.117 | 0.000 | 0.018 | 0.011 | 0.009 | 0.192 | 28 |
Jiangsu | 0.426 | 0.412 | 0.394 | 0.375 | 0.353 | 0.329 | 0.294 | 0.235 | 0.187 | 0.129 | 0.094 | 0.048 | 0.273 | 25 |
Zhejiang | 0.392 | 0.373 | 0.3545 | 0.336 | 0.311 | 0.312 | 0.274 | 0.238 | 0.189 | 0.159 | 0.131 | 0.097 | 0.264 | 26 |
Fujian | 0.325 | 0.315 | 0.316 | 0.303 | 0.32 | 0.297 | 0.255 | 0.173 | 0.16 | 0.090 | 0.052 | 0.005 | 0.218 | 27 |
Shandong | 0.624 | 0.603 | 0.582 | 0.561 | 0.539 | 0.520 | 0.497 | 0.394 | 0.362 | 0.337 | 0.283 | 0.237 | 0.461 | 18 |
Guangdong | 0.000 | 0.001 | 0.003 | 0.000 | 0.000 | 0.000 | 0.002 | 0.000 | 0.000 | 0.031 | 0.021 | 0.025 | 0.007 | 30 |
Hainan | 0.397 | 0.382 | 0.376 | 0.364 | 0.345 | 0.377 | 0.355 | 0.305 | 0.287 | 0.278 | 0.263 | 0.250 | 0.332 | 23 |
Shanxi | 0.839 | 0.831 | 0.823 | 0.815 | 0.807 | 0.8 | 0.791 | 0.777 | 0.768 | 0.755 | 0.746 | 0.735 | 0.791 | 3 |
Anhui | 0.515 | 0.502 | 0.498 | 0.485 | 0.478 | 0.456 | 0.432 | 0.391 | 0.353 | 0.315 | 0.288 | 0.254 | 0.414 | 21 |
Jilin | 0.635 | 0.612 | 0.597 | 0.578 | 0.560 | 0.544 | 0.508 | 0.418 | 0.374 | 0.300 | 0.261 | 0.206 | 0.466 | 16 |
Heilongjiang | 0.506 | 0.504 | 0.505 | 0.501 | 0.499 | 0.506 | 0.500 | 0.419 | 0.391 | 0.360 | 0.334 | 0.302 | 0.444 | 20 |
Jiangxi | 0.497 | 0.476 | 0.454 | 0.438 | 0.429 | 0.411 | 0.374 | 0.342 | 0.321 | 0.293 | 0.263 | 0.235 | 0.378 | 22 |
Henan | 0.593 | 0.591 | 0.587 | 0.585 | 0.584 | 0.567 | 0.535 | 0.453 | 0.43 | 0.390 | 0.347 | 0.305 | 0.497 | 14 |
Hubei | 0.661 | 0.644 | 0.627 | 0.610 | 0.593 | 0.577 | 0.559 | 0.453 | 0.423 | 0.375 | 0.331 | 0.283 | 0.511 | 13 |
Hunan | 0.547 | 0.545 | 0.556 | 0.552 | 0.541 | 0.558 | 0.533 | 0.423 | 0.385 | 0.339 | 0.299 | 0.252 | 0.461 | 19 |
Inner Mongolia | 0.791 | 0.78 | 0.760 | 0.759 | 0.747 | 0.741 | 0.726 | 0.666 | 0.652 | 0.62 | 0.596 | 0.568 | 0.701 | 6 |
Guangxi | 0.534 | 0.531 | 0.53 | 0.529 | 0.527 | 0.51 | 0.488 | 0.433 | 0.411 | 0.380 | 0.349 | 0.318 | 0.462 | 17 |
Chongqing | 0.637 | 0.62 | 0.603 | 0.586 | 0.569 | 0.552 | 0.518 | 0.376 | 0.352 | 0.308 | 0.277 | 0.243 | 0.470 | 15 |
Sichuan | 0.638 | 0.627 | 0.616 | 0.608 | 0.602 | 0.584 | 0.552 | 0.472 | 0.446 | 0.403 | 0.361 | 0.318 | 0.519 | 11 |
Guizhou | 0.768 | 0.775 | 0.782 | 0.786 | 0.794 | 0.786 | 0.777 | 0.734 | 0.717 | 0.695 | 0.676 | 0.655 | 0.745 | 5 |
Yunnan | 0.698 | 0.686 | 0.674 | 0.662 | 0.65 | 0.638 | 0.626 | 0.565 | 0.547 | 0.503 | 0.481 | 0.451 | 0.598 | 9 |
Shaanxi | 0.666 | 0.652 | 0.637 | 0.623 | 0.608 | 0.594 | 0.579 | 0.532 | 0.514 | 0.498 | 0.481 | 0.464 | 0.571 | 10 |
Gansu | 0.684 | 0.686 | 0.695 | 0.701 | 0.717 | 0.71 | 0.697 | 0.677 | 0.659 | 0.632 | 0.622 | 0.605 | 0.674 | 7 |
Qinghai | 0.834 | 0.832 | 0.829 | 0.827 | 0.813 | 0.829 | 0.826 | 0.82 | 0.814 | 0.806 | 0.809 | 0.807 | 0.820 | 2 |
Ningxia | 0.881 | 0.877 | 0.873 | 0.870 | 0.862 | 0.868 | 0.861 | 0.854 | 0.848 | 0.85 | 0.844 | 0.841 | 0.861 | 1 |
Xinjiang | 0.738 | 0.744 | 0.750 | 0.756 | 0.753 | 0.769 | 0.783 | 0.791 | 0.790 | 0.782 | 0.800 | 0.806 | 0.772 | 4 |
Eastern | 0.473 | 0.459 | 0.441 | 0.424 | 0.406 | 0.395 | 0.372 | 0.309 | 0.274 | 0.241 | 0.303 | 0.291 | 0.366 | 4 |
Central | 0.652 | 0.647 | 0.628 | 0.61 | 0.599 | 0.589 | 0.566 | 0.501 | 0.473 | 0.435 | 0.529 | 0.523 | 0.563 | 2 |
Western | 0.717 | 0.717 | 0.705 | 0.688 | 0.675 | 0.668 | 0.654 | 0.607 | 0.591 | 0.565 | 0.635 | 0.633 | 0.655 | 1 |
Nation | 0.578 | 0.568 | 0.552 | 0.535 | 0.52 | 0.512 | 0.493 | 0.434 | 0.407 | 0.375 | 0.443 | 0.434 | 0.488 | 3 |
Variable | Definition | Obs | Mean | Std. Dev. | Min | Max |
Ecp | Energy-saving potential | 360 | 0.482 | 0.233 | 0.000 | 0.881 |
int | Connected development level | 360 | 0.083 | 0.057 | 0.016 | 0.209 |
fd | Financial development | 360 | 1.659 | 0.733 | 0.108 | 5.587 |
hr | Human capital accumulation | 360 | 8.800 | 0.980 | 6.594 | 12.502 |
str | Industrial structural upgrade | 360 | 0.476 | 0.089 | 0.333 | 0.809 |
urban | Urbanization level | 360 | 0.535 | 0.137 | 0.275 | 0.896 |
od | Open to the outside world | 360 | 0.057 | 0.073 | 0.008 | 0.75 |
soe | Corporate labor | 360 | 0.708 | 0.106 | 0.440 | 0.899 |
rd | R&D investment intensity | 360 | 0.015 | 0.011 | 0.002 | 0.060 |
Time | Esp | Inter | ||||
I | z | p-value | I | z | p-value | |
2006 | 0.324*** | 3.457 | 0.001 | 0.324*** | 3.457 | 0.001 |
2007 | 0.306*** | 3.287 | 0.001 | 0.324*** | 3.457 | 0.001 |
2008 | 0.308*** | 3.251 | 0.001 | 0.306*** | 3.287 | 0.001 |
2009 | 0.286*** | 3.015 | 0.003 | 0.308*** | 3.251 | 0.001 |
2010 | 0.256*** | 2.727 | 0.006 | 0.256*** | 2.727 | 0.006 |
2011 | 0.240*** | 2.577 | 0.010 | 0.240*** | 2.577 | 0.010 |
2012 | 0.235** | 2.524 | 0.012 | 0.235** | 2.524 | 0.012 |
2013 | 0.259*** | 2.728 | 0.006 | 0.259*** | 2.728 | 0.006 |
2014 | 0.260*** | 2.729 | 0.006 | 0.260*** | 2.729 | 0.006 |
2015 | 0.293*** | 3.015 | 0.003 | 0.293*** | 3.015 | 0.003 |
2016 | 0.285*** | 2.937 | 0.003 | 0.285*** | 2.937 | 0.003 |
2017 | 0.301*** | 3.088 | 0.002 | 0.301*** | 3.088 | 0.002 |
Variable | OLS | RE | SYS-GMM | DIF-GMM | SDM | SAR |
Int | -0.624***(-4.421) | -1.058***(-9.886) | -0.036*(-1.905) | -0.666***(-19.494) | -0.939**(-2.284) | -0.808***(-5.727) |
Urban | -0.262***(-2.682) | 0.162(1.233) | 0.021(1.195) | -0.114** (-2.227) | 0.812***(4.416) | 0.163(1.321) |
Od | -0.638***(-5.443) | 0.008(0.125) | 0.140***(4.055) | 0.044**(2.468) | 0.016(0.257) | 0.003(0.047) |
soe | -0.774***(-10.111) | -0.303***(-4.230) | -0.300***(-38.929) | 0.006(0.640) | -0.175**(-2.531) | -0.289***(-4.277) |
rd | -6.935***(-6.294) | -10.851***(-7.064) | -1.874***(-13.632) | -7.645*** | -3.036(-1.628) | -9.623***(-6.319) |
(-18.041) | ||||||
cons | 1.359***(23.761) | 0.855***(11.153) | 0.238***(21.051) | |||
ρ | 0.230***(2.927) | 0.212**(2.514) | ||||
AR(1) | -1.88[0.060] | -0.81[0.416] | ||||
AR(2) | 0.83[0.406] | 1.59[0.112] | ||||
Hansen | 27.86[0.266] | 25.95[0.101] | ||||
R2/Wald | 0.6502 | 642801.23*** | 2884.41*** | |||
N | 360 | 360 | 360 | 360 | 360 | 360 |
Variable | (1) | (2) | (3) | (4) | (5) | (6) |
hr | ESP | fd | ESP | str | ESP | |
Int | 6.267***(7.40) | -0.629***(-3.38) | 2.986***(4.52) | -1.093***(-5.58) | 0.634***(8.34) | -0.721***(-3.56) |
hr | -0.124***(-11.49) | |||||
fd | -0.105***(-6.92) | |||||
str | -1.083***(-8.42) | |||||
cons | 8.28***(97.31) | 1.627***(17.86) | 1.411***(21.23) | 0.747***(26.01) | 0.424***(55.5) | 1.058***(18.37) |
N | 360 | 360 | 360 | 360 | 360 | 360 |
Variable | Threshold order | F-value | P-value | Threshold | Critical value | ||
hr | Single threshold | 43.315 | 0.113 | 8.279and10.455 | 84.634 | 56.380 | 44.770 |
Double threshold | 25.162*** | 0.010 | 24.979 | 12.715 | 8.483 | ||
Third threshold | 0.000 | 0.327 | 0.000 | 0.000 | 0.000 | ||
fd | Single threshold | 69.281*** | 0.000 | 1.473and2.365 | 53.661 | 24.470 | 18.389 |
Double threshold | 26.210*** | 0.000 | 1.247 | -20.579 | -28.614 | ||
Third threshold | 0.000 | 0.250 | 0.000 | 0.000 | 0.000 | ||
str | Single threshold | 8.027* | 0.090 | 0.471 and0.615 | 12.852 | 10.210 | 7.557 |
Double threshold | 17.760** | 0.040 | 36.785 | 15.476 | 10.171 | ||
Third threshold | 0.000 | 0.247 | 0.000 | 0.000 | 0.000 |
Variable | hr | fd | str |
urban | -0.645*** (-9.22) | -0.801*** (-8.14) | -0.706*** (-7.06) |
od | 0.048 (0.76) | -0.429*** (-5.27) | 0.260*** (-3.43) |
soe | 0.187*** (2.78) | -0.336*** (-4.08) | -0.151** (-1.73) |
rd | 1.999** (1.69) | -7.258*** (-4.50) | -4.062*** (-4.06) |
Int_1 | -0.483*** (-3.66) | -0.800*** (-5.97) | -0.453*** (-3.32) |
Int_2 | -0.982*** (-13.45) | -0.304*** (-2.66) | -0.687*** (-6.78) |
Int_3 | -2.712*** (-15.04) | -1.158*** (-4.60) | -1.295*** (-7.51) |
Cons | 0.750*** (14.07) | 1.326*** (21.78) | 1.094*** (16.57) |
N | 360 | 360 | 360 |
variable | China | Eastern | Central | Western |
L.ecp | 0.434*** (39.44) | 0.260** (2.05) | 0.175 (1.48) | 0.541*** (3.89) |
int | -0.531*** (-16.75) | -1.215*** (-4.57) | -0.741*** (-4.26) | -0.142 (-0.49) |
urban | 0.013 (0.40) | 0.600 (1.27) | -0.203 (-0.50) | 0.445 (1.33) |
od | 0.038** (2.53) | 0.152 (1.05) | 1.708 (1.20) | -1.399* (1.75) |
soe | -0.026*** (-3.71) | 0.096 (1.50) | 0.040 (0.21) | -0.033 (-0.37) |
ip | -2.156*** (-12.77) | 1.286 (0.52) | -6.523 (-0.99) | -11.901 (-1.23) |
rd | -7.811*** (-42.24) | -16.723*** (-3.04) | -5.525* (-1.89) | -5.932*** (-2.65) |
AR1 | -1.27 [0.203] | -0.25 [0.823] | -0.47 [0.641] | -0.71 [0.480] |
AR2 | 1.57 [0.117] | 1.51 [0.132] | 1.03 [0.303] | 1.12 [0.261] |
Hansen | 28.68 [0.154] | 2.48 [1.00] | 3.58 [0.995] | 7.50 [0.874] |
Wald test | 76639.42*** | 1869.50*** | 229.43*** | 144.35*** |
N | 360 | 132 | 96 | 132 |