Research on the Heterogeneity of Green Biased Technology Progress in Chinese Industries: Decomposition Index Analysis Based on the Slacks-based measure integrating
Abstract
Green-biased technological progress takes into account the influence of energy input and pollution emissions, which is of great significance to China's green development. This paper decomposes technological progress into two categories: green input-biased technological progress (IBTC) and green output-biased technological progress (OBTC), using the Slacks-based measure integrating (SBM) model. The factor bias in technological progress is determined based on data from 34 industries in China from 2000 to 2015. The results show that green-biased technological progress exists significantly in the industry, and most of it promotes the growth of green total factor productivity. IBTC first tends to consume energy to pursue capital between capital input and energy input, while it tends to save energy after the Eleventh Five-Year Plan. Between labor input and energy input, it is biased towards saving labor and consuming resources. OBTC is biased towards promoting industrial growth and curbing pollution emissions. Medium and light-polluting industries are biased toward promoting industrial growth and curbing pollution emissions, while heavy-polluting industries are biased towards emitting more pollution.
1. Introduction
2. Literature review
3. Model construction and variable selection
3.2.1. Measurement of biased technological progress
3.2.2. Judgment of the biased of green technology progress
3.2.3. Data sources
4. Result and Discussion
4.2.1. Calculation of IBTC in the industry
4.2.2. Discrimination of the bias of IBTC in industry
4.3.1. Calculation of OBTC in the industry
4.3.2. Discrimination of OBTC
5. Conclusion
Funding Statement
Acknowledgment
Author contributions
Declaration of Competing Interest
Notes
References
- Abate, G. T., Rashid, S., Borzaga, C., & Getnet, K. (2016). Rural finance and agricultural technology adoption in Ethiopia: does the institutional design of lending organizations matter?. World Development, 84, 235-253. https://doi.org/10.1016/j.worlddev.2016.03.003 [Google Scholar ][Crossref]
- Acemoglu, D. (1998). Why do new technologies complement skills? Directed technical change and wage inequality. The Quarterly Journal of Economics, 113(4), 1055-1089. 10.1162/003355398555838 [Google Scholar ]
- Acemoglu, D. (2007). Equilibrium bias of technology. Econometrica, 75(5), 1371-1409. 10.1111/j.1468-0262.2007.00797.x
- Acemoglu, D., Aghion, P., Bursztyn, L., & Hemous, D. (2012). The environment and directed technical change. American economic review, 102(1), 131-66. 10.1257/aer.102.1.131 [Google Scholar ]
- Bagchi, M., Rahman, S., & Shunbo, Y. (2019). Growth in agricultural productivity and its components in Bangladeshi regions (1987–2009): An application of bootstrapped Data Envelopment Analysis (DEA). Economies, 7(2), 37. https://doi.org/10.3390/economies7020037 [Google Scholar ][Crossref]
- Barros, C. P., & Weber, W. L. (2009). Productivity growth and biased technological change in UK airports. Transportation Research Part E: Logistics and Transportation Review, 45(4), 642-653. https://doi.org/10.1016/j.tre.2009.01.004 [Google Scholar ][Crossref]
- Barros, C. P., & Weber, W. L. (2009). Productivity growth and biased technological change in UK airports. Transportation Research Part E: Logistics and Transportation Review, 45(4), 642-653. https://doi.org/10.1016/j.tre.2009.01.004 [Google Scholar ][Crossref]
- Barros, C. P., Managi, S., & Yoshida, Y. (2010). Productivity growth and biased technological change in Japanese airports. Transport Policy, 17(4), 259-265. https://doi.org/10.1016/j.tranpol.2010.01.009 [Google Scholar ][Crossref]
- Chongvilaivan, A. (2012). Learning by exporting and high-tech capital deepening in Singapore manufacturing industries, 1974–2006. Applied Economics, 44(20), 2551-2568. 10.1080/00036846.2011.566184 [Google Scholar ]
- Coakes, E. W., Smith, P. A., & Alwis, D. (2011). Sustainable innovation and right to market. Information Systems Management,28(1), 30-42. 10.1080/10580530.2011.536110 [Google Scholar ][Crossref]
- Conte, A., & Vivarelli, M. (2007). Globalization and employment: Imported skill biased technological change in developing countries. http://hdl.handle.net/10419/25583 [Google Scholar ]
- Conte, A., & Vivarelli, M. (2011). Imported skill‐biased technological change in developing countries. The Developing Economies, 49(1), 36-65. https://doi.org/10.1111/j.1746-1049.2010.00121.x [Google Scholar ][Crossref]
- Drandakis, E. M., & Phelps, E. S. (1966). A model of induced invention, growth and distribution. The Economic Journal, 76(304), 823-840. 10.2307/2229086 [Google Scholar ]
- Du, K., & Li, J. (2019). Towards a green world: How do green technology innovations affect total-factor carbon productivity. Energy Policy, 131, 240-250. https://doi.org/10.1016/j.enpol.2019.04.033 [Google Scholar ][Crossref]
- Elsby, M. W., Hobijn, B., & Şahin, A. (2013). The decline of the US labor share. Brookings Papers on Economic Activity, 2013(2), 1-63. 10.1353/eca.2013.0016 [Google Scholar ]
- Estache, A., de la Fe, B. T., & Trujillo, L. (2004). Sources of efficiency gains in port reform: a DEA decomposition of a Malmquist TFP index for Mexico. Utilities policy, 12(4), 221-230. https://doi.org/10.1016/j.jup.2004.04.013 [Google Scholar ][Crossref]
- Färe, R., Grifell‐Tatjé, E., Grosskopf, S., & Knox Lovell, C. A. (1997). Biased technical change and the Malmquist productivity index. Scandinavian journal of Economics, 99(1), 119-127. https://doi.org/10.1111/1467-9442.00051 [Google Scholar ][Crossref]
- Färe, R., Grosskopf, S., & Lee, W. F. (2001). Productivity and technical change: the case of Taiwan. Applied Economics, 33(15), 1911-1925. 10.1080/00036840010018711 [Google Scholar ][Crossref]
- Färe, R., Grosskopf, S., Norris, M., & Zhang, Z. (1994). Productivity growth, technical progress, and efficiency change in industrialized countries. The American economic review, 66-83. 10.2307/2117971 [Google Scholar ]
- Feng C, Zheng C J, Shan M L. (2020). The clarification for the features, temporal variations, and potential factors of global carbon dioxide emissions. Journal of Cleaner Production, 255: 120250. https://doi.org/10.1016/j.jclepro.2020.120250 [Google Scholar ][Crossref]
- Galor, O., & Moav, O. (2000). Ability-biased technological transition, wage inequality, and economic growth. The Quarterly Journal of Economics, 115(2), 469-497. 10.2307/2587000 [Google Scholar ]
- Goos, M. (2018). The impact of technological progress on labour markets: policy challenges. Oxford review of economic policy, 34(3), 362-375. 10.1093/oxrep/gry002 [Google Scholar ]
- Goos, M., Manning, A., & Salomons, A. (2014). Explaining job polarization: Routine-biased technological change and offshoring. American economic review, 104(8), 2509-26. 10.1257/aer.104.8.2509 [Google Scholar ]
- Harrigan, J., & Reshef, A. (2015). Skill‐biased heterogeneous firms, trade liberalization and the skill premium. Canadian Journal of Economics/Revue canadienne d'économique, 48(3), 1024-1066. https://doi.org/10.1111/caje.12167 [Google Scholar ][Crossref]
- Hoang, V. N., & Coelli, T. (2011). Measurement of agricultural total factor productivity growth incorporating environmental factors: a nutrients balance approach. Journal of Environmental Economics and Management, 62(3), 462-474. https://doi.org/10.1016/j.jeem.2011.05.009 [Google Scholar ][Crossref]
- Huang L, Rao C, van der Kuijp T J, et al. (2017). A comparison of individual exposure, perception, and acceptable levels of PM2. 5 with air pollution policy objectives in China. Environmental research, 157: 78-86. https://doi.org/10.1016/j.envres.2017.05.012 [Google Scholar ][Crossref]
- Jaumotte, F., Lall, S., & Papageorgiou, C. (2013). Rising income inequality: technology, or trade and financial globalization? IMF Economic Review, 61(2), 271-309. 10.1057/imfer.2013.7 [Google Scholar ]
- Jorgenson, D. W., Ho, M. S., Samuels, J. D., & Stiroh, K. J. (2007). Industry origins of the American productivity resurgence. Economic Systems Research, 19(3), 229-252. : http://dx.doi.org/10.1080/09535310701571885 [Google Scholar ][Crossref]
- Karabarbounis, L., & Neiman, B. (2014). The global decline of the labor share. The Quarterly journal of economics, 129(1), 61-103. 10.1093/qje/qjt032 [Google Scholar ]
- Kennedy, C. (1964). Induced bias in innovation and the theory of distribution. The Economic Journal, 74(295), 541-547. 10.2307/1927763 [Google Scholar ]
- Kiley, M. T. (1999). The supply of skilled labour and skill‐biased technological progress. The Economic Journal, 109(458), 708-724. 10.1111/1468-0297.00470 [Google Scholar ]
- Kratena, K. (2007). Technical change, investment and energy intensity. Economic Systems Research, 19(3), 295-314. 10.1080/09535310701572008 [Google Scholar ]
- Li, B., & Wu, S. (2017). Effects of local and civil environmental regulation on green total factor productivity in China: A spatial Durbin econometric analysis. Journal of Cleaner Production, 153, 342-353. https://doi.org/10.1016/j.jclepro.2016.10.042 [Google Scholar ][Crossref]
- Li, J., See, K. F., & Chi, J. (2019). Water resources and water pollution emissions in China's industrial sector: A green-biased technological progress analysis. Journal of cleaner production, 229, 1412-1426. https://doi.org/10.1016/j.jclepro.2019.03.216 [Google Scholar ][Crossref]
- Li, K., & Lin, B. (2018). How to promote energy efficiency through technological progress in China?. Energy, 143, 812-821. https://doi.org/10.1016/j.energy.2017.11.047 [Google Scholar ][Crossref]
- Luo, C., & Zhang, J. (2010). Declining labor share: is China's case different?. China & World Economy, 18(6), 1-18. https://doi.org/10.1111/j.1749-124X.2010.01217.x [Google Scholar ][Crossref]
- Managi, S., & Karemera, D. (2004). Input and output biased technological change in US agriculture. Applied Economics Letters, 11(5), 283-286. 10.1080/1350485042000221526 [Google Scholar ]
- Molinos-Senante, M., Hernández-Sancho, F., Mocholí-Arce, M., & Sala-Garrido, R. (2014). Economic and environmental performance of wastewater treatment plants: Potential reductions in greenhouse gases emissions. Resource and Energy Economics, 38, 125-140. https://doi.org/10.1016/j.reseneeco.2014.07.001 [Google Scholar ][Crossref]
- Olusegun, S. J., Freitas, E. T., Lara, L. R., & Mohallem, N. D. (2019). Synergistic effect of a spinel ferrite on the adsorption capacity of nano bio-silica for the removal of methylene blue. Environmental Technology, 1-14. : https://doi.org/10.1080/09593330.2019.1694083 [Google Scholar ][Crossref]
- Padhan H, Padhang P C, Tiwari A K, et al. (2020). Renewable energy consumption and robust globalization (s) in OECD countries: Do oil, carbon emissions and economic activity matter?. Energy Strategy Reviews, 32: 100535. https://doi.org/10.1016/j.esr.2020.100535 [Google Scholar ][Crossref]
- Romer, P. M. (1990). Endogenous technological change. Journal of political Economy, 98(5), 71-102. 10.1086/261725 [Google Scholar ]
- Samuelson, P. (1965). A Theory of Induced Innovation along Kennedy Vs Weizâcker Lines. Review of Economics and Statistics,47(4),444-464. 10.2307/1927763 [Google Scholar ]
- Shao, C., Guan, Y., Wan, Z., Guo, C., Chu, C., & Ju, M. (2014). Performance and decomposition analyses of carbon emissions from industrial energy consumption in Tianjin, China. Journal of Cleaner Production, 64, 590-601. https://doi.org/10.1016/j.jclepro.2013.08.017 [Google Scholar ][Crossref]
- Shao, S., Luan, R., Yang, Z., & Li, C. (2016). Does directed technological change get greener: empirical evidence from Shanghai's industrial green development transformation. Ecological Indicators, 69, 758-770. https://doi.org/10.1016/j.ecolind.2016.04.050 [Google Scholar ][Crossref]
- Shen, N., Liao, H., Deng, R., & Wang, Q. (2019). Different types of environmental regulations and the heterogeneous influence on the environmental total factor productivity: empirical analysis of China's industry. Journal of Cleaner Production, 211, 171-184. https://doi.org/10.1016/j.jclepro.2018.11.170 [Google Scholar ][Crossref]
- Shu, T., Zhong, X., & Zhang, S. (2011). TFP electricity consumption efficiency and influencing factor analysis based on DEA method. Energy Procedia, 12, 91-97. https://doi.org/10.1016/j.egypro.2011.10.013 [Google Scholar ][Crossref]
- Song, M., Fisher, R., & Kwoh, Y. (2019). Technological challenges of green innovation and sustainable resource management with large scale data. Technological Forecasting and Social Change,144, 361-368. https://doi.org/10.1016/j.techfore.2018.07.055 [Google Scholar ][Crossref]
- Song, M., Wang, S., & Wu, K. (2018). Environment-biased technological progress and industrial land-use efficiency in China’s new normal. Annals of Operations Research, 268(1-2), 425-440. 10.1007/s10479-016-2307-0 [Google Scholar ][Crossref]
- Wang, C., Liao, H., Pan, S. Y., Zhao, L. T., & Wei, Y. M. (2014). The fluctuations of China’s energy intensity: Biased technical change. Applied energy, 135, 407-414. https://doi.org/10.1016/j.apenergy.2014.06.088 [Google Scholar ][Crossref]
- Wang, K., & Wei, Y. M. (2016). Sources of energy productivity change in China during 1997–2012: A decomposition analysis based on the Luenberger productivity indicator. Energy Economics, 54, 50-59. https://doi.org/10.1016/j.eneco.2015.11.013 [Google Scholar ][Crossref]
- Weber, W. L., & Domazlicky, B. R. (1999). Total factor productivity growth in manufacturing: a regional approach using linear programming. Regional Science and Urban Economics, 29(1), 105-122. https://doi.org/10.1016/S0166-0462(98)00013-1 [Google Scholar ][Crossref]
- Wei, Z., Han, B., Han, L., & Shi, Y. (2019). Factor substitution, diversified sources on biased technological progress and decomposition of energy intensity in China's high-tech industry. Journal of cleaner production, 231, 87-97. https://doi.org/10.1016/j.jclepro.2019.05.223 [Google Scholar ][Crossref]
- Xia F, Xu J. (2020). Green total factor productivity: A re-examination of quality of growth for provinces in China. China Economic Review, 101454. https://doi.org/10.1016/j.chieco.2020.101454 [Google Scholar ][Crossref]
- Xu W, Sun J, Liu Y, et al. (2019). Spatiotemporal variation and socioeconomic drivers of air pollution in China during 2005–2016. Journal of environmental management, 245: 66-75. https://doi.org/10.1016/j.jenvman.2019.05.041 [Google Scholar ][Crossref]
- Yu, M. M., & Chen, L. H. (2020). Evaluation of efficiency and technological bias of tourist hotels by a meta-frontier DEA model. Journal of the Operational Research Society, 71(5), 718-732. https://doi.org/10.1080/01605682.2019.1578625 [Google Scholar ][Crossref]
- Zhang, J. (2008). Estimation of China's provincial capital stock (1952–2004) with applications. Journal of Chinese Economic and Business Studies, 6(2), 177-196. http://dx.doi.org/10.1080/14765280802028302 [Google Scholar ][Crossref]
- Zheng D, Shi M. (2017). Multiple environmental policies and pollution haven hypothesis: evidence from China's polluting industries. Journal of Cleaner Production, 141: 295-304. https://doi.org/10.1016/j.jclepro.2016.09.091 [Google Scholar ][Crossref]
Input portfolio | IBTC>1 | IBTC=1 | IBTC<1 |
---|---|---|---|
x2t+1/x1t+1< x2t/x1t | Save x2,use x1 | Neutral | Save x1,use x2 |
x2t+1/x1t+1>x2t/x1t | Save x1,use x2 | Neutral | Save x2,use x1 |
Output portfolio | OBTC>1 | OBTC=1 | OBTC<1 |
---|---|---|---|
x2t+1/x1t+1< x2t/x1t | Save x2,use x1 | Neutral | Save x1,use x2 |
x2t+1/x1t+1>x2t/x1t | Save x1,use x2 | Neutral | Save x2,use x1 |
Industry | The Tenth Five-Year Plan | The Eleventh Five-Year Plan | The Twelfth Five-Year Plan | 2001 to 2015 |
---|---|---|---|---|
H01 | 1.000258 | 1.001473 | 1.001119 | 1.000950 |
H02 | 0.999310 | 1.000080 | 1.000 480 | 0.999956 |
H03 | 1.003899 | 1.021954 | 1.015667 | 1.013840 |
H04 | 0.990016 | 1.021570 | 1.018450 | 1.010012 |
H05 | 0.997487 | 1.002138 | 0.998331 | 0.999319 |
H06 | 1.000384 | 1.000509 | 1.000063 | 1.000319 |
H07 | 0.999802 | 1.000334 | 0.999739 | 0.999958 |
H08 | 1.000883 | 1.000706 | 0.999582 | 1.000390 |
H09 | 1.005777 | 1.013996 | 1.037240 | 1.019004 |
H10 | 1.001138 | 1.000388 | 1.000151 | 1.000559 |
H11 | 1.000188 | 1.000665 | 0.999910 | 1.000254 |
H12 | 1.000408 | 1.000407 | 0.998729 | 0.999848 |
H13 | 1.000041 | 1.002411 | 1.000915 | 1.001122 |
H14 | 0.996174 | 0.999740 | 0.999703 | 0.998539 |
H15 | 1.020124 | 1.010399 | 1.013557 | 1.014693 |
H16 | 1.000244 | 1.000213 | 1.000803 | 1.000420 |
H17 | 1.000785 | 1.000892 | 1.001972 | 1.001217 |
H18 | 1.000334 | 1.001921 | 1.001179 | 1.001145 |
H19 | 0.999100 | 0.999802 | 0.999842 | 0.999581 |
H20 | 0.999642 | 1.016978 | 1.000147 | 1.005589 |
H21 | 1.012971 | 1.000775 | 1.004667 | 1.006138 |
H22 | 0.998262 | 1.002406 | 1.001695 | 1.000787 |
H23 | 1.072233 | 1.106906 | 1.005089 | 1.061410 |
H24 | 0.988833 | 1.001437 | 1.006252 | 0.998840 |
H25 | 0.996447 | 0.999099 | 1.001127 | 0.998891 |
H26 | 1.000436 | 0.999674 | 1.001460 | 1.000523 |
H27 | 1.000258 | 1.000813 | 1.000940 | 1.000670 |
H28 | 0.999485 | 1.000540 | 1.000650 | 1.000225 |
H29 | 1.000029 | 1.000403 | 1.000295 | 1.000242 |
H30 | 1.000876 | 1.000608 | 1.000653 | 1.000712 |
H31 | 1.024444 | 1.026641 | 1.000466 | 1.017183 |
H32 | 1.044461 | 1.043296 | 1.000328 | 1.029362 |
H33 | 1.008990 | 1.017203 | 1.016276 | 1.014156 |
H34 | 0.996930 | 1.003959 | 1.000231 | 1.000373 |
Mean | 1.004474 | 1.008405 | 1.003622 | 1.005538 |
Year | IBTC | Factor savings from biased technological progress | |||
---|---|---|---|---|---|
E vs K | E vs L | ||||
2001 | 0.999671 | 1.028780 | 1.049773 | K | L |
2002 | 1.003939 | 1.086754 | 1.091802 | K | L |
2003 | 0.999971 | 0.984654 | 0.987311 | E | E |
2004 | 1.003598 | 1.055955 | 1.085452 | K | L |
2005 | 1.015747 | 1.234614 | 1.297856 | K | L |
2006 | 1.052720 | 0.952896 | 0.998405 | E | E |
2007 | 1.005001 | 0.872994 | 0.940388 | E | E |
2008 | 1.003704 | 0.929039 | 1.023328 | E | L |
2009 | 1.002323 | 0.858068 | 0.993322 | E | E |
2010 | 1.008343 | 0.971564 | 1.094264 | E | L |
2011 | 1.003751 | 0.925239 | 1.025348 | E | L |
2012 | 1.00425 | 1.024967 | 1.090507 | K | L |
2013 | 1.002371 | 0.902971 | 0.997907 | E | E |
2014 | 1.003767 | 0.936595 | 1.011286 | E | L |
The Tenth Five-Year Plan | 1.004585 | 1.078152 | 1.102439 | K | L |
The Eleventh Five-Year Plan | 1.008585 | 0.916912 | 1.009941 | E | L |
The Twelfth Five-Year Plan | 1.003651 | 0.950 | 1.031262 | E | L |
2001 to 2014 | 1.005607 | 0.981688 | 1.049068 | E | L |
Industry | The Tenth Five-Year Plan | The Eleventh Five-Year Plan | The Twelfth Five-Year Plan | 2001 to 2015 | |||||
---|---|---|---|---|---|---|---|---|---|
E vs K | E vs L | E vs K | E vs L | E vs K | E vs L | E vs K | E vs L | ||
Heavily polluting industries | H01 | K | L | E | L | E | L | E | L |
H02 | E | E | E | E | E | L | E | L | |
H03 | K | L | E | L | E | E | E | L | |
H04 | K | L | E | L | E | L | E | L | |
H05 | K | L | E | L | E | L | E | L | |
H08 | K | L | E | E | E | L | E | L | |
H10 | K | L | E | L | E | L | K | L | |
H15 | K | L | E | E | E | L | E | L | |
H18 | K | L | E | L | Y | L | K | L | |
H19 | K | L | E | L | E | L | E | L | |
H21 | E | E | E | E | E | L | E | E | |
H23 | K | L | E | E | E | L | K | L | |
H24 | K | L | E | L | E | L | E | L | |
H25 | K | L | E | L | E | L | E | L | |
H33 | E | L | E | L | E | E | E | L | |
H34 | E | L | E | E | E | E | E | E | |
Moderately polluting industries Lightly polluting industries | H06 | K | L | E | E | E | L | E | L |
H07 | K | L | E | E | E | E | E | E | |
H11 | K | L | E | L | E | L | E | L | |
H12 | K | E | E | E | Y | L | E | L | |
H17 | E | E | E | L | E | E | E | E | |
H20 | E | L | E | E | E | L | E | L | |
H22 | K | L | E | L | E | L | E | L | |
H26 | K | L | E | L | E | L | E | L | |
H09 | E | L | E | E | E | E | E | E | |
H13 | K | L | E | E | E | L | E | L | |
H14 | E | E | E | L | Y | L | E | L | |
H16 | K | L | E | L | E | E | E | L | |
H27 | K | L | E | L | E | E | E | L | |
H28 | K | L | E | E | E | E | E | L | |
H29 | E | L | E | L | E | E | E | L | |
H30 | K | L | E | L | E | L | E | L | |
H31 | K | E | E | E | E | L | E | E | |
H32 | E | E | E | E | E | L | E | E |
Industry | The Tenth Five-Year Plan | The Eleventh Five-Year Plan | The Twelfth Five-Year Plan | 2001 to 2015 |
---|---|---|---|---|
H01 | 1.043 850 | 1.027 030 | 1.002 705 | 1.024 528 |
H02 | 1.001 848 | 0.997 155 | 1.069 329 | 1.022 778 |
H03 | 1.335 127 | 1.129 239 | 1.233 780 | 1.232 715 |
H04 | 1.078 473 | 1.137 615 | 1.190 568 | 1.135 552 |
H05 | 1.009 689 | 1.005 680 | 1.022 958 | 1.012 776 |
H06 | 1.003 404 | 1.003 874 | 1.014 162 | 1.007 147 |
H07 | 1.001 727 | 1.000 322 | 1.001 479 | 1.001 176 |
H08 | 1.001 794 | 0.995 379 | 0.995 279 | 0.997 484 |
H09 | 1.012 824 | 1.001 425 | 0.993 202 | 1.002 484 |
H10 | 1.004 632 | 0.999 241 | 1.001 142 | 1.001 671 |
H11 | 0.997 583 | 1.004 394 | 1.000 834 | 1.000 937 |
H12 | 1.007 029 | 1.000 392 | 0.997 152 | 1.001 525 |
H13 | 1.012 490 | 1.006 203 | 0.994 336 | 1.004 343 |
H14 | 1.020 488 | 1.013 210 | 1.002 739 | 1.012 146 |
H15 | 1.007 090 | 1.018 453 | 1.073 019 | 1.032 854 |
H16 | 1.001 741 | 1.002 571 | 1.000 239 | 1.001 517 |
H17 | 1.002 233 | 0.999 745 | 1.003 646 | 1.001 875 |
H18 | 1.003 518 | 1.000 698 | 0.991 600 | 0.998 605 |
H19 | 1.006 001 | 1.000 657 | 1.029 501 | 1.012 053 |
H20 | 0.998 134 | 0.989 910 | 1.013 975 | 1.000 673 |
H21 | 1.009 905 | 1.016 825 | 1.004 210 | 1.010 313 |
H22 | 1.001 627 | 0.999 803 | 0.997 738 | 0.999 723 |
H23 | 1.004 307 | 1.037 826 | 1.009 189 | 1.017 108 |
H24 | 1.040 283 | 1.019 379 | 1.187 298 | 1.082 320 |
H25 | 0.997 152 | 1.027 499 | 1.032 642 | 1.019 097 |
H26 | 1.007 625 | 0.994 973 | 1.001 706 | 1.001 435 |
H27 | 1.007 111 | 1.001 936 | 1.002 725 | 1.003 924 |
H28 | 0.997 606 | 1.006 892 | 0.998 762 | 1.001 087 |
H29 | 1.002 870 | 0.999 781 | 0.999 191 | 1.000 614 |
H30 | 1.009 469 | 1.000 814 | 0.997 705 | 1.002 663 |
H31 | 0.996 697 | 1.035 167 | 1.041 095 | 1.024 320 |
H32 | 0.969 150 | 1.035 791 | 0.991 054 | 0.998 665 |
H33 | 1.027 143 | 1.032 302 | 1.012 657 | 1.024 034 |
H34 | 1.016 473 | 1.010 059 | 1.004 689 | 1.010 407 |
Mean | 1.017 289 | 1.015 479 | 1.024 619 | 1.019 345 |
Year | OBTC | The promotion of factors by biased technological progress | |||
---|---|---|---|---|---|
Y vs S | Y vs Q | ||||
2001 | 1.009299 | 1.144734 | 1.136221 | Y | Y |
2002 | 1.014867 | 1.516852 | 1.098959 | Y | Y |
2003 | 1.012814 | 1.478777 | 1.498078 | Y | Y |
2004 | 1.004681 | 1.243479 | 1.198233 | Y | Y |
2005 | 1.051549 | 1.193216 | 1.070377 | Y | Y |
2006 | 1.052720 | 1.237744 | 1.194537 | Y | Y |
2007 | 1.008614 | 1.216245 | 1.134980 | Y | Y |
2008 | 1.009208 | 1.117767 | 1.116095 | Y | Y |
2009 | 1.007696 | 1.126166 | 1.116126 | Y | Y |
2010 | 1.001470 | 1.365071 | 1.148575 | Y | Y |
2011 | 1.005139 | 1.304823 | 1.149348 | Y | Y |
2012 | 1.014751 | 1.100664 | 1.292608 | Y | Y |
2013 | 1.048650 | 0.982057 | 1.210757 | S | Y |
2014 | 1.059450 | 2.993832 | 1.046224 | Y | Y |
The Tenth Five-Year Plan | 1.018642 | 1.315411 | 1.200373 | Y | Y |
The Eleventh Five-Year Plan | 1.015942 | 1.212599 | 1.142062 | Y | Y |
The Twelfth Five-Year Plan | 1.026115 | 1.488645 | 1.146798 | Y | Y |
2001 to 2014 | 1.020233 | 1.338885 | 1.163078 | Y | Y |
Industry | The Tenth Five-Year Plan | The Eleventh Five-Year Plan | The Twelfth Five-Year Plan | 2001 to 2015 | |||||
---|---|---|---|---|---|---|---|---|---|
Y vs S | Y vs Q | Y vs S | Y vs Q | Y vs S | Y vs Q | Y vs S | Y vs Q | ||
Heavily Polluting industries | H01 | Y | Y | Y | Y | Y | Y | Y | Y |
H02 | Y | Y | S | Q | S | Y | Y | Y | |
H03 | Y | Y | Y | Y | Y | Y | Y | Y | |
H04 | Y | Y | Y | Y | Y | Y | Y | Y | |
H05 | Y | Q | Y | Y | Y | Y | Y | Y | |
H08 | Y | Y | S | Q | S | Q | S | Y | |
H10 | Y | Y | S | Q | S | Y | Y | Y | |
H15 | Y | Y | Y | Y | Y | Y | Y | Y | |
H18 | Y | Q | Y | Q | Y | Q | S | Y | |
H19 | Y | Y | Y | Y | Y | Y | Y | Y | |
H21 | Y | Y | Y | Y | Y | Y | Y | Y | |
H23 | Y | Y | Y | Y | Y | Y | Y | Y | |
H24 | Y | Y | Y | Q | Y | Y | Y | Y | |
H25 | S | Q | Y | Y | Y | Y | Y | Y | |
H33 | Y | Y | Y | Q | Y | Y | Y | Y | |
H34 | Y | Y | Y | Y | Y | Y | Y | Y | |
Moderately polluting industries | H06 | Y | Y | Y | Y | Y | Y | Y | Y |
H07 | Y | Y | Y | Q | Y | Y | Y | Y | |
H11 | S | Q | Y | Y | Y | Y | Y | Y | |
H12 | Y | Y | Y | Y | Y | Y | Y | Y | |
H17 | Y | Y | S | Q | S | Q | Y | Y | |
H20 | S | Q | S | Q | S | Y | Y | Y | |
H22 | Y | Y | S | Q | S | Q | S | Y | |
H26 | Y | Y | S | Q | S | Y | Y | Y | |
Lightly polluting industries | H09 | Y | Y | Y | Y | Y | Q | Y | Y |
H13 | Y | Y | Y | Y | Y | Y | Y | Y | |
H14 | Y | Y | Y | Y | Y | Y | Y | Y | |
H16 | Y | Y | Y | Y | Y | Q | Y | Y | |
H27 | Y | Y | Y | Y | Y | Y | Y | Y | |
H28 | S | Q | Y | Y | Y | Q | Y | Y | |
H29 | Y | Y | S | Q | S | Y | Y | Y | |
H30 | Y | Y | Y | Y | Y | Y | Y | Y | |
H31 | Y | Q | Y | Q | Y | Y | Y | Y | |
H32 | Y | Q | Y | Y | Y | Q | S | Y |