A Comparative Machine Learning Survival Models Analysis for Predicting Time to Bank Failure in the US (2001-2023)
Abstract
This study investigates the likelihood of time to bank failures in the US between 2001 and April 2023, based on data collected from the Federal Deposit Insurance Corporation's report on "Bank Failures in Brief - Summary 2001 through 2023". The dataset includes 564 instances of bank failures and several variables that may be related to the likelihood of such events, such as asset amount, deposit amount, ADR, deposit level, asset level, inflation rate, short-term interest rates, bank reserves, and GDP growth rate. We explore the efficacy of machine learning survival models in predicting bank failures and compare the performance of different models. Our findings shed light on the factors that may influence the probability of bank failures with a time perspective and provide insights for improving risk management practices in the banking industry.
1. Introduction
2. Theorical perspective
3. Empirical Analysis
3.1.1. Cox Proportional Hazards Model (coxph)
3.1.2. Multi-Task Logistic Regression (MTLR)
3.1.3. Kernel Support Vector Machine (Kernel SVM)
3.1.4. Random Survival Forest
3.1.5. DeepSurv
3.3.1. C-Index
4. Results
4.2.1. Matrix Analysis
4.2.2. 2008 Financial Crisis
4.2.3. If we include the data from GDP1pch
5. Conclusion
Funding Statement
Acknowledgment
Declaration of Competing Interest
Notes
References
- Altman, E. I. (1968). Financial ratios, discriminant analysis and the prediction of corporate bankruptcy. The Journal of Finance, 23(4), 589–609. https://doi.org/10.2307/2978933 [Google Scholar ][Crossref]
- Altman, E. I., Marco, G., & Varetto, F. (1994). Corporate distress diag- nosis: comparisons using linear discriminant analysis and neural networks (the Italian experience). Journal of Banking & Finance, 18(3), 505–529. https://doi.org/10.1016/0378-4266(94)90007-8 [Google Scholar ][Crossref]
- Andersen, P. K., & Gill, R. D. (1982). Cox’s regression model for counting processes: A large sample study. The Annals of Statistics, 10, 1100–1120. [Google Scholar ]
- Ascher, H. (1983). Regression analysis of repairable systems reliability. In Electronic systems effectiveness and life cycle costing (pp. 119–133). Berlin, Heidelberg: Springer. https://doi.org/10.1007/978-3-642-82014-4_8 [Google Scholar ][Crossref]
- Back, B., Laitinen, T., & Sere, K. (1996). Neural networks and ge- netic algorithms for bankruptcy predictions. Expert Systems with Applications, 11(4), 407–413. https://doi.org/10.1016/S0957-4174(96)00055-3 [Google Scholar ][Crossref]
- Bai, C., Liu, Q., Lu, J., Song, F. M., & Zhang, J. (2004). Corporate governance and market valuation in China. Journal of Comparative Economics, 32(4), 599–616. https://doi.org/10.1016/j.jce.2004.07.00 [Google Scholar ][Crossref]
- Balcaen, S., & Ooghe, H. (2006). 35 Years of studies on business failure: an overview of the classical statistical methodologies and their related problems. The British Accounting Review, 38(1), 63–93. https://doi.org/10.1016/j.bar.2005.09.001 [Google Scholar ][Crossref]
- Beaver, W. H. (1966). Financial ratios as predictors of failure. Journal of Accounting Research, 4, 71–111. https://doi.org/10.2307/2490171 [Google Scholar ][Crossref]
- Bharath, S. T., & Shumway, T. (2008). Forecasting default with the merton distance to default model. Review of Financial Studies, 21(3), 1339–1369. https://doi.org/10.1093/rfs/hhn044 [Google Scholar ][Crossref]
- Bijwaard, G. E., Franses, P. H., & Paap, R. (2006). Modeling purchases as repeated events. Journal of Business & Economic Statistics, 24, 487–502. ttps://doi.org/10.1198/073500106000000242 [Google Scholar ][Crossref]
- Bonfim, D. (2009). Credit risk drivers: evaluating the contribution of firm level information and of macroeconomic dynamics. Journal of Banking & Finance, 33(2), 281–299. https://doi.org/10.1016/j.jbankfin.2008.08.00 [Google Scholar ][Crossref]
- Box-Steffensmeier, J. M., & Boef, S. D. (2006). Repeated events survival models: the conditional frailty model. Statistics in Medicine, 25(20), 3518–3533. https://doi.org/10.1002/sim.2434 [Google Scholar ][Crossref]
- Brier, G. W. (1950). Verification of forecasts expressed in terms of probability. Monthly Weather Review, 78(1), 1–3. [Google Scholar ]
- Cai, J., & Schaubel, D. E. (2003). Analysis of recurrent event data. Handbook of Statistics, 23, 603–623. https://doi.org/10.1016/S0169-7161(03)23034-0 [Google Scholar ][Crossref]
- Carling, T., Pan, D., Ariyan, S., Narayan, D., & Truini, C. (2007). Diagnosis and treatment of interval sentinel lymph nodes in patients with cutaneous melanoma. Plastic and Reconstructive Surgery, 119(3), 907–913. [Google Scholar ]
- Chang, S.-H., & Wang, M.-C. (1999). Conditional regression analysis for recurrence time data. Journal of the American Statistical Association, 94(448), 1221–1230. https://doi.org/10.1080/01621459.1999.10473875 [Google Scholar ][Crossref]
- Chava, S., & Jarrow, R. A. (2004). Bankruptcy prediction with industry effects. Review of Finance, 8(4), 537–569. https://doi.org/10.1093/rof/8.4.537 [Google Scholar ][Crossref]
- Choi, H., Son, H., & Kim, C. (2018). Predicting financial distress of contractors in the construction industry using ensemble learning. Expert Systems with Applications, 110, 1–10. https://doi.org/10.1016/j.eswa.2018.05.026 [Google Scholar ][Crossref]
- Choodari-Oskooei, B., Royston, P., & Parmar, M. K. (2012). A simulation study of predictive ability measures in a survival model II: ex- plained randomness and predictive accuracy. Statistics in Medicine, 31(23), 2644–2659. https://doi.org/10.1002/sim.4242 [Google Scholar ][Crossref]
- Cielen, A., Peeters, L., & Vanhoof, K. (2004). Bankruptcy prediction using a data envelopment analysis. European Journal of Operational Research, 154(2), 526–532. https://doi.org/10.1016/S0377-2217(03)00186-3 [Google Scholar ][Crossref]
- Clayton, D. (1994). Some approaches to the analysis of recurrent event data. Statistical Methods in Medical Research, 3(3), 244–262. https://doi.org/10.1177/096228029400300304 [Google Scholar ][Crossref]
- Deakin, E. B. (1972). A discriminant analysis of predictors of business failure. Journal of Accounting Research, 3(3), 167–179. https://doi.org/10.2307/2490225 [Google Scholar ][Crossref]
- Dimitras, A. I., Slowinski, R., Susmaga, R., & Zopounidis, C. (1999). Business failure prediction using rough sets. European Journal of Operational Research, 114(2), 263–280. https://doi.org/10.1016/S0377-2217(98)00255-0 [Google Scholar ][Crossref]
- du Jardin, P. (2017). Dynamics of firm financial evolution and bankruptcy prediction. Expert Systems with Applications, 75, 25–43. https://doi.org/10.1016/j.eswa.2017.01.016 [Google Scholar ][Crossref]
- Duffie, D., Saita, L., & Wang, K. (2007). Multi-period corporate default prediction with stochastic covariates. Journal of Financial Economics, 83(3), 635–665. https://doi.org/10.1016/j.jfineco.2005.10.011 [Google Scholar ][Crossref]
- Edmister, R. O. (1972). An empirical test of financial ratio analy- sis for small business failure prediction. Journal of Financial and Quantitative Analysis, 7(2), 1477–1493. doi:10.2307/2329929 [Google Scholar ][Crossref]
- Ejoku, J., Odhiambo, C., & Chaba, L. (2020). Analysis of recurrent events with associated informative censoring: Application to HIV data. International Journal of Statistics in Medical Research, 9(21). [Google Scholar ]
- Geng, R., Bose, I., & Chen, X. (2015). Prediction of financial distress: an empirical study of listed Chinese companies using data mining. European Journal of Operational Research, 241(1), 236–247. https://doi.org/10.1016/j.ejor.2014.08.016 [Google Scholar ][Crossref]
- Gepp, A., & Kumar, K. (2008). The role of survival analysis in financial distress prediction. International Research Journal of Finance and Economics, 16(16), 13–34. [Google Scholar ]
- Gilson, S. C. (1989). Management turnover and financial distress. Journal of Financial Economics, 25(2), 241–262. https://doi.org/10.1016/0304-405X(89)90083-4 [Google Scholar ][Crossref]
- Godlewski, C. J. (2015). The dynamics of bank debt renegotiation in Europe: A survival analysis approach. Economic Modelling, 49, 19–31. https://doi.org/10.1016/j.econmod.2015.03.017 [Google Scholar ][Crossref]
- Gönen, M., & Heller, G. (2005). Concordance probability and discrimi- natory power in proportional hazards regression. Biometrika, 92(4), 965–970. https://doi.org/10.1093/biomet/92.4.965 [Google Scholar ][Crossref]
- Graf, E., Schmoor, C., Sauerbrei, W., & Schumacher, M. (1999). As- sessment and comparison of prognostic classification schemes for survival data. Statistics in Medicine, 18(17–18), 2529–2545. https://doi.org/10.1002/(SICI)1097-0258(19990915/30)18:17/18<2529::AID-SIM274>3.0.CO;2-5 [Google Scholar ][Crossref]
- Graf, E., & Schumacher, M. (1995). An investigation on measures of explained variation in survival analysis. Journal of the Royal Statistical Society. Series D, 44(4), 497–507. https://doi.org/10.2307/2348898 [Google Scholar ][Crossref]
- Harrell Jr, F. E., Lee, K. L., & Mark, D. B. (1996). Multivariable prognostic models: issues in developing models, evaluating assumptions and adequacy, and measuring and reducing errors. Statistics in Medicine, 15(4), 361–387. https://doi.org/10.1002/(SICI)1097-0258(19960229)15:4<361::AID-SIM168>3.0.CO;2-4 [Google Scholar ][Crossref]
- Henriques, I. C., Sobreiro, V. A., Kimura, H., & Mariano, E. B. (2020). Two-stage DEA in banks: Terminological controversies and future directions. Expert Systems with Applications, 161, 113632. https://doi.org/10.1016/j.eswa.2020.113632 [Google Scholar ][Crossref]
- Hosaka, T. (2019). Bankruptcy prediction using imaged financial ratios and convolutional neural networks. Expert Systems with Applications, 117, 287–299. https://doi.org/10.1016/j.eswa.2018.09.039 [Google Scholar ][Crossref]
- Hu, Y. C., & Ansell, J. (2007). Measuring retail company performance using credit scoring techniques. European Journal of Operational Research, 183(3), 1595–1606. https://doi.org/10.1016/j.ejor.2006.09.101 [Google Scholar ][Crossref]
- Hu, D., & Zheng, H. (2015). Does ownership structure affect the degree of corporate financial distress in China? Journal of Accounting in Emerging Economies, 5(1), 35–50. https://doi.org/10.1108/JAEE-09-2011-0037 [Google Scholar ][Crossref]
- Hua, Z., Wang, Y., Xu, X., Zhang, B., & Liang, L. (2007). Predicting corporate financial distress based on integration of support vector machine and logistic regression. Expert Systems with Applications, 33(2), 434–440. https://doi.org/10.1016/j.eswa.2006.05.006 [Google Scholar ][Crossref]
- Jiang, Y., & Jones, S. (2018). Corporate distress prediction in China: a machine learning approach. Account Finance, 58, 1063–1109. https://doi.org/10.1111/acfi.12432 [Google Scholar ][Crossref]
- Jiang, S. T., Landers, T. L., & Reed Rhoads, T. (2006). Proportional intensity models robustness with overhaul intervals. Quality and Reliability Engineering International, 22(3), 251–263. https://doi.org/10.1002/qre.713 [Google Scholar ][Crossref]
- John, T. A. (1993). Accounting measures of corporate liquidity, leverage, and costs of financial distress. Financial Management, 22(3), 91–100. https://doi.org/10.2307/3665930 [Google Scholar ][Crossref]
- Kahl, M. (2002). Economic distress, financial distress, and dynamic liquidation. The Journal of Finance, 57(1), 135–168. https://doi.org/10.1111/1540-6261.00418 [Google Scholar ][Crossref]
- Kam, A., Citron, D., & Muradoglu, G. (2010). Financial distress resolution in China – two case studies. Qualitative Research in Financial Markets, 2(2), 46–79. https://doi.org/10.1108/17554171011053667 [Google Scholar ][Crossref]
- Kaplan, E. L., & Meier, P. (1958). Nonparametric estimation from in- complete observations. Journal of the American Statistical Association, 53(282), 457–481. https://doi.org/10.1080/01621459.1958.10501452 [Google Scholar ][Crossref]
- Kim, M., Ma, S., & Zhou, Y. (2016). Survival prediction of distressed firms: evidence from the Chinese special treatment firms. Journal of the Asia Pacific Economy, 21(3), 418–443. https://doi.org/ 10.1080/13547860.2016.1176645 [Google Scholar ][Crossref]
- Kristanti, Farida Titik, & Herwany, Aldrin (2017). Corporate governance, financial ratios, political risk and financial distress: A survival analysis. Accounting and Finance Review, 2(2), 26–34. [Google Scholar ]
- Kuhnen, C. M., & Melzer, B. T. (2018). Noncognitive abilities and financial delinquency: the role of self-efficacy in avoiding financial distress. The Journal of Finance, 73(6), 2837–2869. https://doi.org/10.1111/jofi.12724 [Google Scholar ][Crossref]
- Kumar, P. R., & Ravi, V. (2007). Bankruptcy prediction in banks and firms via statistical and intelligent techniques – a review. European Journal of Operational Research, 180(1), 1–28. https://doi.org/10.1016/j.ejor.2006.08.043 [Google Scholar ][Crossref]
- Lacher, R. C., Coats, P. K., Sharma, S. C., & Fant, L. F. (1995). A neural network for classifying the financial health of a firm. European Journal of Operational Research, 85(1), 53–65. https://doi.org/10.1016/0377-2217(93)E0274-2 [Google Scholar ][Crossref]
- Lane, W. R., Looney, S. W., & Wansley, J. W. (1986). An application of the cox proportional hazards model to bank failure. Journal of Banking & Finance, 10(4), 511–531. https://doi.org/10.1016/S0378-4266(86)80003-6 [Google Scholar ][Crossref]
- Lee, M. C. (2014). Business bankruptcy prediction based on survival analysis approach. International Journal of Computer Science & Information Technology, 6(2), 103. https://doi.org/10.5121/ijcsit.2014.6207 [Google Scholar ][Crossref]
- Leonardis, D. D., & Rocci, R. (2008). Assessing the default risk by means of a discrete – time survival analysis approach. Applied Stochastic Models in Business and Industry, 24(4), 291–306. https://doi.org/10.1002/asmb.705 [Google Scholar ][Crossref]
- Leong, R. W., Nguyen, N., Meredith, C. G., et al. (2008). In vivo confocal endomicroscopy in the diagnosis and evaluation of celiac disease. Gastroenterology, 135(6), 1870–1876. https://doi.org/10.1053/j.gastro.2008.08.054 [Google Scholar ][Crossref]
- Li, Z., Crook, J., & Andreeva, G. (2014). Chinese companies distress prediction: an application of data envelopment analysis. Journal of the Operational Research Society, 65(3), 466–479. https://doi.org/10.1057/jors.2013.67 [Google Scholar ][Crossref]
- Li, Z., Crook, J., & Andreeva, G. (2017). Dynamic prediction of financial distress using Malmquist DEA. Expert Systems with Applications, 80, 94–106. https://doi.org/10.1016/j.eswa.2017.03.017 [Google Scholar ][Crossref]
- Li, Z., Crook, J., Andreeva, G., & Tang, Y. (2021). Predicting the risk of fi- nancial distress using corporate governance measures. Pacific-Basin Finance Journal, 68, Article 101334. https://doi.org/10.1016/j.pacfin.2020.101334 [Google Scholar ][Crossref]
- Li, H., Wang, Z., & Deng, X. (2008). Ownership, independent direc- tors, agency costs and financial distress: evidence from Chinese listed companies. Corporate Governance: The International Journal of Business in Society, 8(5), 622–636. https://doi.org/10.1108/14720700810913287 [Google Scholar ][Crossref]
- Luoma, M., & Laitinen, E. K. (1991). Survival analysis as a tool for company failure prediction. Omega, 19(6), 673–678. https://doi.org/10.1016/0305-0483(91)90015-L [Google Scholar ][Crossref]
- Mai, F., Tian, S., Lee, C., & Ma, L. (2019). Deep learning models for bankruptcy prediction using textual disclosures. European Journal of Operational Research, 274(2), 743–758. https://doi.org/10.1016/j.ejor.2018.10.024 [Google Scholar ][Crossref]
- Mantel, N. (1966). Evaluation of survival data and two new rank order statistics arising in its consideration. Cancer Chemother Rep, 50(3), 163–170. [Google Scholar ]
- Martin, D. (1977). Early warning of bank failure: a logit regression approach. Journal of Banking & Finance, 1(3), 249–276. https://doi.org/10.1016/0378-4266(77)90022-X [Google Scholar ][Crossref]
- Merton, R. C. (1974). On the pricing of corporate debt: the risk structure of interest rates. The Journal of Finance, 29(2), 449–470. https://doi.org/10.2307/2978814 [Google Scholar ][Crossref]
- Min, J. H., & Lee, Y. C. (2005). Bankruptcy prediction using support vector machine with optimal choice of kernel function parameters. Expert Systems with Applications, 28(4), 603–614. https://doi.org/10.1016/j.eswa.2004.12.008 [Google Scholar ][Crossref]
- Moulton, L. H., & Dibley, M. J. (1997). Multivariate time-to-event models for studies of recurrent childhood diseases. International Journal of Epidemiology, 26(6), 1334–1339. https://doi.org/10.1093/ije/26.6.1334 [Google Scholar ][Crossref]
- Ohlson, J. A. (1980). Financial ratios and the probabilistic prediction of bankruptcy. Journal of Accounting Research, 18(1), 109–131. https://doi.org/10.2307/2490395 [Google Scholar ][Crossref]
- O’Neill, H. M. (1986). Turnaround and recovery: What strategy do you need? Long Range Planning, 19(1), 80–88. https://doi.org/10.1016/0024-6301(86)90131-7 [Google Scholar ][Crossref]
- Paradi, J. C., Asmild, M., & Simak, P. C. (2004). Using DEA and worst practice DEA in credit risk evaluation. Journal of Productivity Analysis, 21(2), 153–165. https://doi.org/10.1023/B:PROD.0000016870.47060.0b [Google Scholar ][Crossref]
- Parker, S., Peters, G. F., & Turetsky, H. F. (2005). Corporate governance factors and auditor going concern assessments. Review of Accounting and Finance, 4(3), 5–29. https://doi.org/10.1108/eb043428 [Google Scholar ][Crossref]
- Peña, E. A., Slate, E. H., & González, J. R. (2007). Semiparametric inference for a general class of models for recurrent events. Journal of Statistical Planning and Inference, 137(6), 1727–1747. https://doi.org/10.1016/j.jspi.2006.05.004 [Google Scholar ][Crossref]
- Pfennig, A., Schlattmann, P., Alda, M., Grof, P., Glenn, T., Müller- Oerlinghausen, B., et al. (2010). Influence of atypical features on the quality of prophylactic effectiveness of long-term lithium treatment in bipolar disorders. Bipolar Disorders, 12(4), 390–396. https://doi.org/10.1111/j.1399-5618.2010.00826.x [Google Scholar ][Crossref]
- Platt, H. D., & Platt, M. B. (2002). Predicting corporate financial distress: Reflections on choice-based sample bias. Journal of Economics and Finance, 26(2), 184–199. https://doi.org/10.1007/BF02755985 [Google Scholar ][Crossref]
- Prentice, R. L., Williams, B. J., & Peterson, A. V. (1981). On the regression analysis of multivariate failure time data. Biometrika, 68, 373–389. https://doi.org/10.1093/biomet/68.2.373 [Google Scholar ][Crossref]
- Rahman, M. S., Ambler, G., Choodari-Oskooei, B., & Omar, R. Z. (2017). Review and evaluation of performance measures for survival pre- diction models in external validation settings. BMC Medical Research Methodology, 17(1), 60. https://doi.org/10.1186/s12874-017-0336-2 [Google Scholar ][Crossref]
- Schemper, M., & Stare, J. (1996). Explained variation in survival analysis. Statistics in Medicine, 15(19), 1999–2012. https://doi.org/10.1002/(SICI)1097-0258(19961015)15:19<1999::AID-SIM353>3.0.CO;2-D [Google Scholar ][Crossref]
- Shumway, T. (2001). Forecasting bankruptcy more accurately: a simple hazard model. Journal of Business, 74(1), 101–124. https://www.jstor.org/stable/10.1086/209665 [Google Scholar ]
- Sun, J., Jia, M. Y., & Li, H. (2011). Adaboost ensemble for finan- cial distress prediction: an empirical comparison with data from Chinese listed companies. Expert Systems with Applications, 38(8), 9305–9312. https://doi.org/10.1016/j.eswa.2011.01.042 [Google Scholar ][Crossref]
- Tam, K. Y., & Kiang, M. Y. (1992). Managerial applications of neural networks: the case of bank failure predictions. Management Science, 38(7), 926–947. https://doi.org/10.1287/mnsc.38.7.926 [Google Scholar ][Crossref]
- Tinoco, M. H., & Wilson, N. (2013). Financial distress and bankruptcy prediction among listed companies using accounting, market and macroeconomic variables. International Review of Financial Analysis, 30, 394–419. https://doi.org/10.1016/j.irfa.2013.02.013 [Google Scholar ][Crossref]
- Twisk, J., Smidt, N., & de Vente, W. (2005). Applied analysis of recurrent events: a practical overview. Journal of Epidemiology and Community Health, 59, 706–710. http://dx.doi.org/10.1136/jech.2004.030759 [Google Scholar ][Crossref]
- Uno, H., Cai, T., Pencina, M. J., D’Agostino, R. B., & Wei, L. J. (2011). On the C-statistics for evaluating overall adequacy of risk predic- tion procedures with censored survival data. Statistics in Medicine, 30(10), 1105–1117. https://doi.org/10.1002/sim.4154 [Google Scholar ][Crossref]
- Verikas, A., Kalsyte, Z., Bacauskiene, M., & Gelzinis, A. (2010). Hybrid and ensemble-based soft computing techniques in bankruptcy prediction: a survey. Soft Computing, 14(9), 995–1010. https://doi.org/10.1007/s00500-009-0490-5 [Google Scholar ][Crossref]
- Wang, Y. L., & Carson, J. (2010). Macroeconomic factors and insurer rating transitions. Forensic Economics EJournal. Wang, Yuling and Carson, James M., Macroeconomic Factors and Insurer Rating Transitions (February 14, 2010). http://dx.doi.org/10.2139/ssrn.1558456 [Google Scholar ][Crossref]
- Wang, Z., & Deng, X. (2006). Corporate governance and financial distress. The Chinese Economy, 39(5), 5–27. https://doi.org/10.2753/CES1097-1475390501 [Google Scholar ][Crossref]
- Wang, Z., & Li, H. (2007). Financial distress prediction of Chinese listed companies: a rough set methodology. Chinese Management Studies, 1(2), 93–110. https://doi.org/10.1108/17506140710758008 [Google Scholar ][Crossref]
- Wei, L. J., Lin, D. Y., & Weissfeld, L. (1989). Regression analysis of multivariate incomplete failure time data by modelling marginal distributions. Journal of the American Statistical Association, 84(408), 1065–1073. https://doi.org/10.1080/01621459.1989.10478873 [Google Scholar ][Crossref]
- Wruck, K. H. (1990). Financial distress, reorganization, and or- ganizational efficiency. Journal of Financial Economics, 27(2), 419–444. https://doi.org/10.1016/0304-405X(90)90063-6 [Google Scholar ][Crossref]
- Wu, D., Liang, L., & Yang, Z. (2008). Analysing the financial distress of Chinese public companies using probabilistic neural networks and multivariate discriminate analysis. Socio-Economic Planning Sciences, 42(3), 206–220. https://doi.org/10.1016/j.seps.2006.11.002 [Google Scholar ][Crossref]
- Yang, Z., You, W., & Ji, G. (2011). Using partial least squares and support vector machines for bankruptcy prediction. Expert Systems with Applications, 38(7), 8336–8342. https://doi.org/10.1016/j.eswa.2011.01.021 [Google Scholar ][Crossref]
- Zhou, F., Fu, L., Li, Z., & Xu, J. (2022). The recurrence of financial distress: A survival analysis. International Journal of Forecasting, 38(3), 1100-1115. https://doi.org/10.1016/j.ijforecast.2021.12.005 [Google Scholar ][Crossref]
Call: surfit(formula = Surv(time, status) ~ 1, data = data.train | ||||||
time | n.risk | n.event | survival | std.error | lower 95% CI | upper 95% CI |
50 | 381 | 14 | 0.9646 | 0.00930 | 0.9465 | 0.9830 |
100 | 353 | 30 | 0.8886 | 0.01583 | 0.8581 | 0.9202 |
120 | 158 | 193 | 0.4000 | 0.02465 | 0.3545 | 0.4514 |
150 | 41 | 117 | 0.1038 | 0.01535 | 0.0777 | 0.1387 |
180 | 16 | 25 | 0.0405 | 0.00992 | 0.0251 | 0.0655 |
230 | 5 | 11 | .0127 | 0.00562 | 0.0053 | .0302 |