Objective: The DSS was utilized to construct colitis model of mouse. The colitis mice were colonized with gut microbiota. The effects of gut microbial metabolites on colitis were studied. The mechanisms of gut microbial metabolites to improve intestinal immunity were also further explored. Methods: The male BALB/c mice were selected to construct colitis mouse model with DSS and colonized with gut microbiota. The content of short-chain fatty acids in intestinal metabolites of mice during modeling were detected with GC-MS. After the mice were sacrificed, the colon tissue was stained to observe the colitis in different groups of mice. The contents of IL-22 and IL-17 in colon tissue was determined with ELISA method. To study the mechanism of relieving colitis, qRT-PCR and western blotting were used to study the horizontal of Ffar2 gene and pSTAT3 and pAKT in colon tissue, respectively. The congenital lymphocytes were isolated and purified, and the migration ability of the congenital lymphocytes was examined by cell scratch plane migration test. Results: The colonization of the gut microbiota had significant effects on the contents of short-chain fatty acids in the intestinal metabolites of colitis mice, of which the effect on the content of acetic acid and butyric acid was more significant. The colonization of gut microbiota could effectively relieve colitis in mice and effectively promote the secretion of IL-22 in colon tissue. Studying the remission mechanism indicated that colonization of gut microbiota with colitis could effectively promote the expression of Ffar2 gene in colon tissue and increase the expression of pSTAT3 and pAKT protein. The migration ability of the lymphocyte was significantly upregulated in the model group compared with the other groups, demonstrating that DSS can effectively activate the lymphocyte; The migration of congenital lymphocyte in the experimental group was significantly alleviated than that in the model group, but it was up-regulated than that in the positive control group, and the colonic tissue of the positive control group was similar to that of the normal group. Conclusion: The short-chain fatty acids in the intestinal flora metabolites can promote the gene expression of the metabolite-sensitive receptor Ffar2. The effective combination of short-chain fatty acids and Ffar2 receptors can promote the phosphorylation of STAT3 and AKT proteins, effectively promote the secretion of IL-22 in intestinal ILC3 cells, alleviate colitis in mice, and thereby improve their intestinal immune function.