This paper provides a thorough review of the shifting landscape of economic analysis, spotlighting recent trends and predicting future paths. While traditional economic models remain key for interpreting economic activity, they are being supplemented by fresh methods and cross-disciplinary viewpoints. The increased attention to inequality studies, using advanced statistical techniques and unique data sources, underscores the growing emphasis on fairness and distribution within economic analysis. The incorporation of behavioral elements into economic models also expands our comprehension of economic decision-making and market results. Notably, the emergence of computational economics-integrating artificial intelligence (AI), big data, and machine learning into economic scrutiny-represents a major development. Often referred to as ’smart economics,’ this field employs technology to formulate, address complex economic dilemmas, and perceive economic activity in unconventional ways. Yet, the application of AI and machine learning in economics introduces new hurdles around data privacy, algorithmic bias, and the transparency of model outcomes. The impact of the digital revolution on economic analysis is significant, as the advent of computational economics and the surge of big data are transforming research techniques and policy implications. Concurrently, the advent of the circular economy indicates a radical shift in our perspective on economic sustainability, carrying considerable implications for environmental policy and business tactics. In the future, it’s anticipated that these trends will further modify the realm of economic analysis, with AI and machine learning integration, emphasis on sustainability and fairness, and the influence of big data becoming more pronounced. As these changes take place, it’s imperative for researchers, policymakers, and practitioners to remain adaptable and flexible, prepared to capitalize on the opportunities and tackle the challenges these trends present.