Journal Browser
Journal Insights

Frequency: Quarterly

Time to first decision: 2.4 Weeks

Submission to publication: 10 Weeks

Acceptance rate: 26 %

E-ISSN: 2811-0943

Journal Citations

Abstracting and Indexing

徽标低可信度描述已自动生成

Members

徽标, 公司名称描述已自动生成图示中度可信度描述已自动生成

徽标描述已自动生成图标描述已自动生成

Related Journal
Open Access Journal Article

Manufacturing Cost Estimation Using Piecewise Function Approaches

by Eren Sakinc a  and  Alice E. Smith b,* orcid
a
Bayer Pharmaceuticals, New Jersey, USA
b
Department of Industrial and Systems Engineering, Auburn University, Auburn, USA
*
Author to whom correspondence should be addressed.
Received: 8 April 2023 / Accepted: 20 May 2023 / Published Online: 22 June 2023

Abstract

This paper describes two novel approaches to cost estimation of manufactured products where a data set of similar products have known manufactured costs. The methods use the notion of piecewise functions and are (1) clustering and (2) splines. Cost drivers are typically a mixture of categorical and numeric data which complicates cost estimation. Both clustering and splines approaches can accommodate this. Through four case studies, we compare our approaches with the often-used regression models. Our results show that clustering especially offers promise in improving the accuracy of cost estimation. While clustering and splines are slightly more complex to develop from both a user and a computational perspective, our approaches are packaged in an open-source software. This paper is the first known to adapt and apply these two well-known mathematical approaches to manufacturing cost estimation.


Copyright: © 2023 by Sakinc and E. Smith. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY) (Creative Commons Attribution 4.0 International License). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
Show Figures

Share and Cite

ACS Style
Sakinc, E.; E. Smith, A. Manufacturing Cost Estimation Using Piecewise Function Approaches. Journal of Economic Analysis, 2023, 2, 40. https://doi.org/10.58567/jea02030007
AMA Style
Sakinc E, E. Smith A. Manufacturing Cost Estimation Using Piecewise Function Approaches. Journal of Economic Analysis; 2023, 2(3):40. https://doi.org/10.58567/jea02030007
Chicago/Turabian Style
Sakinc, Eren; E. Smith, Alice 2023. "Manufacturing Cost Estimation Using Piecewise Function Approaches" Journal of Economic Analysis 2, no.3:40. https://doi.org/10.58567/jea02030007
APA style
Sakinc, E., & E. Smith, A. (2023). Manufacturing Cost Estimation Using Piecewise Function Approaches. Journal of Economic Analysis, 2(3), 40. https://doi.org/10.58567/jea02030007

Article Metrics

Article Access Statistics

References

  1. Almond, D., Chay, K. Y., & Lee, D. S. (2005). The cost of low birth weight. The Quarterly Journal of Economics 120(3), 1031-1084. https://doi.org/10.1093/qje/120.3.1031
  2. Al-Sultan, K. S. (1995). A tabu search approach to the clustering problem. Pattern Recognition 28(9), 1443-1451. https://doi.org/10.1016/0031-3203(95)00022-R
  3. Angelis, L. & Stamelos, I. (2000). A simulation tool for efficient analogy based cost estimation. Empirical Software Engineering 5(1), 35-68. https://doi.org/10.1023/A:1009897800559
  4. Audet, C., Le Digabel, S. & Tribes, C. (2009). NOMAD user guide. Les cahiers du GERAD, Technical Report G-2009-37. https://www.gerad.ca/fr/papers/G-2009-37.pdf
  5. Baker, F. B. & Hubert, L. J. (1975). Measuring the power of hierarchical cluster analysis. Journal of the American Statistical Association 70(349), 31-38. https://doi.org/10.2307/2285371
  6. Carides, G. W., Heyse, J. F. & Iglewicz, B. (2000). A regression-based method for estimating mean treatment cost in presence of right-censoring. Biostatistics 1(3), 299-313. https://doi.org/10.1093/biostatistics/1.3.299
  7. Chang, W. (2016). Package 'shiny': Web application framework for R, R Package version 0.13.2. Retrieved from https://github.com/rstudio/shiny/
  8. Cheng, C.-H. (1995). A branch and bound clustering algorithm. IEEE Transactions on Systems, Man and Cybernetics 25(5), 895-898.
  9. Curry, H. B. & Schoenberg, I. J. (1947). On spline distributions and their limits: The Polya distribution functions. Bulletin of the American Mathematical Society 53, no. 1114.
  10. Dai, J. S., Niazi, A., Balabani, S. & Seneviratne, L. (2006). Product cost estimation: Technique classification and methodology review. Journal of Manufacturing Science and Engineering 128(2), 563-575. https://doi.org/10.1115/1.2137750
  11. Dalrymple-Alford, E. C. (1970). Measurement of clustering in free recall. Psychological Bulletin 74(1), 32-34.
  12. de Boor, C. (1976). A Practical Guide to Splines. New York: Springer-Verlag.
  13. Dunn, J. C. (1973). A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters. Journal of Cybernetics 3(3), 32-57.
  14. Eilers, P. H. C. & Marx, B. D. (1996). Flexible smoothing with B-splines and penalties. Statistical Science 11(2), 89-102. https://doi.org/10.1214/ss/1038425655
  15. Everitt, B. S., Landau, S., Leese, M., & Stahl, D. (2010). Cluster Analysis. Chichester: John Wiley & Sons.
  16. Goodman, L. A., & Kruskal, W. H. (1954). Measures of association for cross classifications. Journal of the American Statistical Association 49(268), 732-764.
  17. Gower, J. C. (1971). A general coefficient of similarity and some of its properties. Biometrics 27(4), 857-871.
  18. Huang, Z. (1997). Clustering large data sets with mixed numeric and categorical values. Proceedings of the 1st Pacific-Asia Conference on Knowledge Discovery and Data Mining Conference, 21-34.
  19. Huang, Z. (1998). Extensions to the k-means algorithm for clustering large data sets with categorical values. Data Mining and Knowledge Discovery 2(3), 283-304.
  20. Jones, D. R., & Beltramo, M. A. (1991). Solving partitioning problems with genetic algorithms. Proceedings of the Fourth International Conference on Genetic Algorithms, 442-449.
  21. Kaufmann, L., & Rousseeuw, P. (1987). Clustering by means of medoids. In Statistical Data Analysis Based on the L1-norm and Related Methods, 405-416. Amsterdam: Springer.
  22. Kaufmann, L., & Rousseeuw, P. J. (1990). Finding Groups in Data. New York: John Wiley & Sons.
  23. Koontz, W. L. G., Narendra, P. M., & Fukunaga, K. (1975). A branch and bound clustering algorithm. IEEE Transactions on Computers 24(9), 908-915.
  24. Layer, A., Brinke, E.T., Houten, F.V., Kals, H., & Haasis, S. (2002). Recent and future trends in cost estimation. International Journal of Computer Integrated Manufacturing, 15(6), 499-510. https://doi.org/10.1080/09511920210143372
  25. Lee, A., Cheng, C.H., & Balakrishnan, J. (1998). Software development cost estimation: integrating neural network with cluster analysis. Information & Management, 34(1), 1-9. https://doi.org/10.1016/S0378-7206(98)00041-X
  26. Li, Q., & Racine, J.S. (2007). Nonparametric Econometrics: Theory and Practice. Princeton University Press.
  27. Ma, S., Racine, J.S., & Yang, L. (2014). Spline regression in the presence of categorical design predictors. Journal of Applied Econometrics, 10(5), 705-717. https://www.jstor.org/stable/26609055
  28. MacQueen, J. (1967). Some methods for classification and analysis of multivariate observations. Proceedings of Fifth Berkeley Symposium on Mathematical Statistics and Probability, 1, 281-297.
  29. Michaud, K., Messer, J., Choi, H.K., & Wolfe, F. (2003). Direct medical costs and their predictors in patients with rheumatoid arthritis. Arthritis and Rheumatism, 48(10), 2750-2762. https://doi.org/10.1002/art.11439
  30. Milligan, G.W., & Cooper, M.C. (1985). An examination of procedures for determining the number of clusters in a data set. Psychometrika, 50(2), 159-179.
  31. Monmarché, N., Slimane, M., & Venturini, G. (1999). On improving clustering in numerical databases with artificial ants. In Advances in Artificial Life (pp. 626-635). Springer. https://link.springer.com/chapter/10.1007/3-540-48304-7_83
  32. Nie, Z., & Racine, J.S. (2012). The crs package: Nonparametric regression splines for continuous and categorical predictors. The R Journal, 4.2, 48-56. https://doi.org/10.32614/RJ-2012-012
  33. Omran, M., Salman, A., & Engelbrecht, A.P. (2002). Image classification using particle swarm optimization. Proceedings of the 4th Asia-Pacific Conference on Simulated Evolution and Learning, 370-374. https://link.springer.com/chapter/10.1007/978-3-540-34956-3_6
  34. Pahariya, J.S., Ravi, V., & Carr, M. (2009). Software cost estimation using computational intelligence techniques. World Congress on Nature and Biologically Inspired Computing, 849-854 https://doi.org/10.1109/NABIC.2009.5393534 .
  35. Pal, N.R., Bezdek, J.C., & Tsao, E.C.-K. (1993). Generalized clustering networks and Kohonen's self-organizing scheme. IEEE Transactions on Neural Networks, 4(4), 549-557. https://doi.org/10.1109/72.238310
  36. Racine, J.S., Nie, Z., & Ripley, B.D. (2014). Package 'crs': Categorical regression splines. R Package version 0.15-24. Retrieved from https://github.com/JeffreyRacine/R-Package-crs/
  37. Rousseeuw, P.J. (1987). Silhouettes: A graphical aid to the interpretation and validation of cluster analysis. Journal of Computational and Applied Mathematics, 20, 53-65.
  38. SAS/STAT 9.2 User's Guide. (2008). SAS Institute Inc.
  39. Schumaker, L.L. (2007). Spline Functions: Basic Theory. Cambridge University Press. https://doi.org/10.1017/CBO9780511618994
  40. Selim, S.Z., & Al-Sultan, K.S. (1991). A simulated annealing algorithm for the clustering problem. Pattern Recognition, 24(10), 1003-1008. https://doi.org/10.1016/0031-3203(95)00022-R
  41. Sneath, P.H.A. (1957). The application of computers to taxonomy. Microbiology, 17(1), 201-226.
  42. Sokal, R.R., & Michener, C.D. (1958). A statistical method for evaluating systematic relationships. University of Kansas Scientific Bulletin, 38, 1409-1438.
  43. Sørenson, T. (1948). A method of establishing groups of equal amplitude in plant sociology based on similarity of species and its application to analyses of the vegetation on Danish commons. Biologiske Skrifter, 5, 1-34.
  44. Valverde, S.C., & Humphrey, D.B. (2004). Predicted and actual costs from individual bank mergers. Journal of Economics and Business, 56, 137-157. https://doi.org/10.1016/j.jeconbus.2003.05.001
  45. Van Hai, V., Nhung, H.L.T.K., Prokopova, Z., Silhavy, R., & Silhavy, P. (2022). Toward improving the efficiency of software development effort estimation via clustering analysis. IEEE Access, 10, 83249-83264. https://doi.org/10.1109/ACCESS.2022.3185393 .
  46. Ward Jr, J.H. (1996). Hierarchical grouping to optimize an objective function. Journal of the American Statistical Association, 58(301), 236-244.
  47. Wolfe, J.H. (1970). Pattern clustering by multivariate mixture analysis. Multivariate Behavioral Research, 5(3), 329-350.
  48. Xu, Z., & Khoshgoftaar, T.M. (2004). Identification of fuzzy models of software cost estimation. Fuzzy Sets and Systems, 145(1), 141-163. https://doi.org/10.1016/j.fss.2003.10.008
  49. Zahn, C.T. (1971). Graph-theoretical methods for detecting and describing gestalt clusters. IEEE Transactions on Computers, 100(1), 68-86. doi: 10.1109/T-C.1971.223083