Journal Article
Portfolio Allocation with Medical Expenditure Risk-A Life Cycle Model and Machine Learning Analysis
by
You Du
and
Weige Huang
Abstract
This paper explores how the medical expenditure risk affects the households’ portfolio choice across health status theoretically in a life cycle model and empirically using machine learning methods. Medical expenditure risk, as a background risk, has the potential to influence households’ financial decisions. A higher medical expenditure risk leads to a larger fluct
[...] Read more
This paper explores how the medical expenditure risk affects the households’ portfolio choice across health status theoretically in a life cycle model and empirically using machine learning methods. Medical expenditure risk, as a background risk, has the potential to influence households’ financial decisions. A higher medical expenditure risk leads to a larger fluctuation and more uncertainty in households’ consumption and therefore utility. As a result, risk-free assets become more attractive. Our machine learning analysis provides evidence that aligns with the predictions of the theoretical life cycle model. Specifically, households with better health hold a larger proportion of stocks in their portfolios. Furthermore, when facing increased medical expenditure risk, households in good health demonstrate a greater willingness to invest in safe assets.