Journal Article
Optimal sizing and siting of single tunned passive filter based on jellyfish algorithm
by
Adel Abo El-Ela
, Ragab El-Sehiemy
, Sohir M. Allam
and
Asmaa Adel Mubarak
Abstract
The presence of electrical harmonics in low voltage networks causes many problems for customers, the most important of which is the decrease in the power quality beyond the permissible limits, which leads to a decrease in voltage for long periods, a decrease in power factor and a large losses in the electrical network due to the deformation of the electric waveform of voltage a
[...] Read more
The presence of electrical harmonics in low voltage networks causes many problems for customers, the most important of which is the decrease in the power quality beyond the permissible limits, which leads to a decrease in voltage for long periods, a decrease in power factor and a large losses in the electrical network due to the deformation of the electric waveform of voltage and current. The aim of this paper is to design an optimal passive filter and its optimal location to suppress the harmonic distortion in the distribution system that results from nonlinear loads. This filter will use single objective functions and multi objective functions that will minimize the proposed filter cost, the real power losses, total harmonic distortion "THD" and individual harmonic distortion "IHD". This will be done under the equality constraint of power balance and some inequality constraints such as filter parameters limits, quality factor limits, voltage limits, harmonic distortion limits. The optimal passive filter parameters and location will be calculated using the modern optimization techniques such jellyfish optimization technique. IEEE 33 bus radial system will be used for demonstrating results obtained by the proposed method.