This paper presents an analytical framework to assess the probability of achieving nationally determined contributions (NDC). The prediction model based on the Kaya identity is used to simulate the pathway of carbon emission until the target year. Applying the modified STIRPAT framework (named CO-STIRPAT) to data observed in South Korea shows that the probability that the predicted pathway with existing climate technology will stay above the NDC target pathway is significantly high. The result suggests that it is necessary to design a climate policy to improve energy intensity and carbon intensity by accelerating the advance in climate technology.
This paper presents an operational framework for assessing the trajectories of production, energy, emissions, and capital accumulation to ensure the implementation of Nationally Determined Contributions (NDCs). The framework combines widely used methodologies (STIRPAT, system dynamics, and optimization) to simulate the pathways of variables until a target year. The CO-STIRPAT dynamic system allows us to identify the spillover pathways from carbon policy to economic growth based on output optimization principles; to conduct a more systematic analysis of the interconnections between the main drivers that determine carbon emissions; to develop a cost-effective climate policy mix that is a backbone for the right combination of carbon pricing, energy efficiency, and carbon intensity; and to assess NDC targets with respect to ambition gaps, implementation gaps, and feasibility.